Skip to main content

Advertisement

Log in

Glucocorticoids: New mechanisms and future agents

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Glucocorticoids are widely used to treat inflammatory and immune diseases. The most common use of glucocorticoids today is in the treatment of asthma. Inhaled glucocorticoids are first-line treatment in adults and children with persistent asthma, the most common chronic airway inflammatory disease. Our knowledge of how glucocorticoids suppress inflammation is based on recent developments in understanding the fundamental mechanisms of gene transcription, namely recruitment of histone-modifying co-factors. The determination of the crystal structure of the ligand-binding domain of the human glucocorticoid receptor (GR) has advanced our understanding of how ligands interact with GR and provide a glimpse of a future of rational drug design based on "spacefilling" structures with dissociated properties. This might have important clinical implications, leading to a better understanding of the inflammatory mechanisms of many diseases and might signal the development of new anti-inflammatory treatments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Barnes PJ, Adcock IM: Transcription factors and asthma. Eur Respir J 1998, 12:221–234.

    Article  PubMed  CAS  Google Scholar 

  2. Hart LA, Krishnan VL, Adcock IM, et al.: Activation and localization of transcription factor, nuclear factor-κB, in asthma. Am J Respir Crit Care Med 1998, 158:1585–1592.

    PubMed  CAS  Google Scholar 

  3. Barnes PJ, Karin M: Nuclear factor-kB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997, 336:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  4. Zhu Z, Tang W, Ray A, et al.: Rhinovirus stimulation of interleukin-6 in vivo and in vitro: evidence for nuclear factor kB-dependent transcriptional activation. J Clin Invest 1996, 97:421–430.

    Article  PubMed  CAS  Google Scholar 

  5. Donovan CE, Mark DA, He HZ, et al.: NF-kB/Rel transcription factors: c-Rel promotes airway hyperresponsiveness and allergic pulmonary inflammation. J Immunol 1999, 163:6827–6833.

    PubMed  CAS  Google Scholar 

  6. Urnov FD, Wolffe AP: Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 2001, 20:2991–3006. In this paper, it is reported that histones are constitutively acetylated in yeast and undergo continual acetylation/deacetylation cycles. This suggests that HATs and HDACs must have easy access to histone tails so that small changes in acetylation status can be rapidly translated into effects on transcription.

    Article  PubMed  CAS  Google Scholar 

  7. Berger SL: An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene 2001, 20:3007–3013.

    Article  PubMed  CAS  Google Scholar 

  8. Janknecht R, Hunter T: Versatile molecular glue: transcriptional control. Curr Biol 1996, 6:951–954.

    Article  PubMed  CAS  Google Scholar 

  9. Pazin MJ, Kadonaga JT: What’s up and down with histone deacetylation and transcription? Cell 1997, 89:325–328.

    Article  PubMed  CAS  Google Scholar 

  10. Waterborg JH: Steady-state levels of histone acetylation in Saccharomyces cerevisiae. J Biol Chem 2000, 275:13007–13011. This paper reports that histones are constitutively acetylated in yeast and are rapidly turned over. This suggests that HATs and HDACs must have easy access to chromatin so that small changes in acetylation status must be rapidly translated to effect transcription.

    Article  PubMed  CAS  Google Scholar 

  11. Bertos NR, Wang AH, Yang XJ: Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 2001, 79:243–252.

    Article  PubMed  CAS  Google Scholar 

  12. Fischle W, Kiermer V, Dequiedt F, Verdin E: The emerging role of class II histone deacetylases. Biochem Cell Biol 2001, 79:337–348.

    Article  PubMed  CAS  Google Scholar 

  13. Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293:1074–1080. The authors introduce the concept of a "histone code," which states that posttranslational modifications of histones act in concert to modify gene regulation. Crosstalk between acetylation and phosphorylation of a specific histone, for example, might modify the transcriptional response directed by either modification alone.

    Article  PubMed  CAS  Google Scholar 

  14. Baldwin AS: Series introduction: the transcription factor NFkB and human disease. J Clin Invest 2001, 107:3–6.

    PubMed  CAS  Google Scholar 

  15. Sica A, Dorman L, Viggiano V, et al.: Interaction of NF-kB and NFAT with the interferon-gamma promoter. J Biol Chem 1997, 272:30412–30420.

    Article  PubMed  CAS  Google Scholar 

  16. Ohmori Y, Schreiber RD, Hamilton TA: Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kB. J Biol Chem 1997, 272:14899–14907.

    Article  PubMed  CAS  Google Scholar 

  17. Zhong H, May MJ, Jimi E, Ghosh S: The phosphorylation status of nuclear NF-kB determines its association with CBP/ p300 or HDAC-1. Mol Cell 2002, 9:625–636.

    Article  PubMed  CAS  Google Scholar 

  18. Ito K, Barnes PJ, Adcock IM: Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 2000, 20:6891–6903. This paper illustrates that acetylation of specific lysine residues at the GM-CSF promoter is associated with gene transcription and that glucocorticoids can suppress the activity of the NF-κB-associated HATs at this site by recruitment of HDACs. Using a pharmacologic approach, it was possible to dissociate the effects seen with low and high concentrations of dexamethasone on HAT activity.

    Article  PubMed  CAS  Google Scholar 

  19. Nasuhara Y, Adcock IM, Catley M, et al.: Differential Iκβ kinase activation and Iκβα degradation by interleukin-1β and tumor necrosis factor-α in human U937 monocytic cells: evidence for additional regulatory steps in κB-dependent transcription. J Biol Chem 1999, 274:19965–19972.

    Article  PubMed  CAS  Google Scholar 

  20. Sheppard KA, Rose DW, Haque ZK, et al.: Transcriptional activation by NF-kB requires multiple coactivators. Mol Cell Biol 1999, 19:6367–6378.

    PubMed  CAS  Google Scholar 

  21. Furia B, Deng L, Wu K, et al.: Enhancement of nuclear factorkB acetylation by coactivator p300 and HIV-1 tat proteins. J Biol Chem 2002, 277:4973–4980.

    Article  PubMed  CAS  Google Scholar 

  22. Jenkins BD, Pullen CB, Darimont BD: Novel glucocorticoid receptor coactivator effector mechanisms. Trends Endocrinol Metab 2001, 12:122–126.

    Article  PubMed  CAS  Google Scholar 

  23. Saccani S, Pantano S, Natoli G: Two waves of nuclear factor kB recruitment to target promoters. J Exp Med 2001, 193:1351–1359. This important paper demonstrated, using chromatin immunoprecipitation, that NF-κB did not immediately bind to its DNA consensus sites in all responsive genes but that often remodeling of chromatin by other transcription factors is an essential prerequisite for NF-κB DNA binding and gene induction.

    Article  PubMed  CAS  Google Scholar 

  24. Saccani S, Pantano S, Natoli G: p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nat Immunol 2002, 3:69–75.

    Article  PubMed  CAS  Google Scholar 

  25. Beato M, Herrlich P, Schutz G: Steroid hormone receptors: many actors in search of a plot. Cell 1995, 83:851–857.

    Article  PubMed  CAS  Google Scholar 

  26. Yudt MR, Cidlowski JA: The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 2002, 16:1719–1726.

    Article  PubMed  CAS  Google Scholar 

  27. Leung DM, Hamid Q, Vottero A, et al.: Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor beta. J Exp Med 1997, 186:1567–1574.

    Article  PubMed  CAS  Google Scholar 

  28. Hecht K, Carlstedt-Duke J, Stierna P, et al.: Evidence that the bisoform of the human glucocorticoid receptor does not act as a physiologically significant repressor. J Biol Chem 1997, 272:26659–26664.

    Article  PubMed  CAS  Google Scholar 

  29. Bodwell JE, Webster JC, Jewell CM, et al.: Glucocorticoid receptor phosphorylation: overview, function and cell cycle-dependence. J Steroid Biochem Mol Biol 1998, 65:91–99.

    Article  PubMed  CAS  Google Scholar 

  30. Webster JC, Jewell CM, Bodwell JE, et al.: Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J Biol Chem 1997, 272:9287–9293.

    Article  PubMed  CAS  Google Scholar 

  31. Kido H, Fukusen N, Katunuma N: Inhibition by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, an inhibitor of protein kinase C, of enzyme induction by glucocorticoid and of nuclear translocation of glucocorticoid-receptor complexes. Biochem Biophys Res Commun 1987, 144:152–159.

    Article  PubMed  CAS  Google Scholar 

  32. Rogatsky I, Logan SK, Garabedian MJ: Antagonism of glucocorticoid receptor transcriptional activation by the c-Jun Nterminal kinase. Proc Natl Acad Sci U S A 1998, 95:2050–2055.

    Article  PubMed  CAS  Google Scholar 

  33. Wang Z, Frederick J, Garabedian MJ: Deciphering the phosphorylation "code" of the glucocorticoid receptor in vivo. J Biol Chem 2002, 277:26573–26580.

    Article  PubMed  CAS  Google Scholar 

  34. Irusen E, Matthews JG, Takahashi A, et al.: p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 2002, 109:649–657.

    Article  PubMed  CAS  Google Scholar 

  35. Reichardt HM, Kaestner KH, Tuckermann J, et al.: DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998, 93:531–541.

    Article  PubMed  CAS  Google Scholar 

  36. Hall SE, Lim S, Witherden IR, et al.: Lung type II cell and macrophage annexin I release: differential effects of two glucocorticoids. Am J Physiol 1999, 276:L114-L121.

    PubMed  CAS  Google Scholar 

  37. Newton R, Hart LA, Stevens DA, et al.: Effect of dexamethasone on interleukin-1β-(IL-1β)-induced nuclear factor-kB (NF-kB) and kB-dependent transcription in epithelial cells. Eur J Biochem 1998, 254:81–89.

    Article  PubMed  CAS  Google Scholar 

  38. Heck S, Bender K, Kullmann M, et al.: I-kBα independent downregulation of NF-kB activity by glucocorticoid receptor. EMBO J 1997, 16:4698–4707.

    Article  PubMed  CAS  Google Scholar 

  39. Rosenfeld MG, Glass CK: Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 2001, 276:36865–36868.

    Article  PubMed  CAS  Google Scholar 

  40. Li Q, Wrange O: Accessibility of a glucocorticoid response element in a nucleosome depends on its rotational positioning. Mol Cell Biol 1995, 15:4375–4384.

    PubMed  CAS  Google Scholar 

  41. Fragoso G, John S, Roberts MS, Hager GL: Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev 1995, 9:1933–1947.

    PubMed  CAS  Google Scholar 

  42. Belikov S, Gelius B, Almouzni G, Wrange O: Hormone activation induces nucleosome positioning in vivo. EMBO J 2000, 19:1023–1033.

    Article  PubMed  CAS  Google Scholar 

  43. McNally JG, Muller WG, Walker D, et al.: The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 2000, 287:1262–1265. Using FRAP and FLIP, this paper clearly shows that GR-binding activation and subsequent gene transcription occurs in a "hit-and-run" manner. GR is associated with MMTV-LTR for less than 10 sec before being ejected. The paper raises questions as to how such transient binding can mediate prolonged downstream events.

    Article  PubMed  CAS  Google Scholar 

  44. Fletcher TM, Ryu BW, Baumann CT, et al.: Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol Cell Biol 2000, 20:6466–6475.

    Article  PubMed  CAS  Google Scholar 

  45. Deroo BJ, Rentsch C, Sampath S, et al.: Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol 2002, 22:4113–4123.

    Article  PubMed  CAS  Google Scholar 

  46. Urnov FD, Wolffe AP: A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol 2001, 15:1–16.

    Article  PubMed  CAS  Google Scholar 

  47. Karin M: New twists in gene regulation by glucocorticoid receptor: Is DNA binding dispensable? Cell 1998, 93:487–490.

    Article  PubMed  CAS  Google Scholar 

  48. Saccani S, Natoli G: Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev 2002, 16:2219–2224.

    Article  PubMed  CAS  Google Scholar 

  49. Kagoshima M, Wilcke T, Ito K, et al.: Glucocorticoid-mediated transrepression is regulated by histone acetylation and DNA methylation. Eur J Pharmacol 2001, 429:327–334.

    Article  PubMed  CAS  Google Scholar 

  50. De Bosscher K, Vanden Berghe W, Vermeulen L, et al.: Glucocorticoids repress NF-kB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc Natl Acad Sci U S A 2000, 97:3919–3924.

    Article  PubMed  CAS  Google Scholar 

  51. Nissen RM, Yamamoto KR: The glucocorticoid receptor inhibits NF-kB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 2000, 14:2314–2329.

    Article  PubMed  CAS  Google Scholar 

  52. Reichardt HM, Tuckermann JP, Gottlicher M, et al.: Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 2001, 20:7168–7173. Using mice containing a mutant GR, which cannot dimerize, these authors show that DNA binding of GR is not necessary for repression of NF-κB-mediated gene transcription and inhibition of inflammation.

    Article  PubMed  CAS  Google Scholar 

  53. Caelles C, Gonzalez-Sancho JM, Munoz A: Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev 1997, 11:3351–3364.

    PubMed  CAS  Google Scholar 

  54. Vanden Berghe W, Vermeulen L, De Wilde G, et al.: Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem Pharmacol 2000, 60:1185–1195.

    Article  Google Scholar 

  55. Lasa M, Brook M, Saklatvala J, Clark AR: Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogenactivated protein kinase p38. Mol Cell Biol 2001, 21:771–780.

    Article  PubMed  CAS  Google Scholar 

  56. Lasa M, Abraham SM, Boucheron C, et al.: Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol 2002, 22:7802–7811.

    Article  PubMed  CAS  Google Scholar 

  57. Itoh M, Adachi M, Yasui H, et al.: Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol Endocrinol 2002, 16:2382–2392.

    Article  PubMed  CAS  Google Scholar 

  58. Bledsoe RK, Montana VG, Stanley TB, et al.: Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 2002, 110:93–105. The determination of the crystal structure of the GR LBD advanced our understanding of how ligands interact with GR. The authors provide a molecular rationale for the distinct actions of GR monomers and dimers and raise the possibility of designing dissociated drugs based on occupancy of the unique ligand-binding pocket.

    Article  PubMed  CAS  Google Scholar 

  59. Ito K, Jazrawi E, Cosio B, et al.: 2001 p65-activated histone acetyltransferase activity is repressed by glucocorticoids. mifepristone fails to recruit HDAC2 to the p65-HAT complex. J Biol Chem 2001, 276:30208–30215.

    Article  PubMed  CAS  Google Scholar 

  60. Heck S, Kullmann M, Gast A, et al.: A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J 1994, 13:4087–4095.

    PubMed  CAS  Google Scholar 

  61. Adcock IM, Nasuhara Y, Stevens DA, Barnes PJ: Ligand-induced differentiation of glucocorticoid receptor (GR) trans-repression and transactivation: preferential targetting of NF-kB and lack of I-kB involvement. Br J Pharmacol 1999, 127:1003–1011.

    Article  PubMed  CAS  Google Scholar 

  62. Vayssiere BM, Dupont S, Choquart A, et al.: Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol 1997, 11:1245–1255.

    Article  PubMed  CAS  Google Scholar 

  63. Belvisi MG, Wicks SL, Battram CH, et al.: Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J Immunol 2001, 166:1975–1982.

    PubMed  CAS  Google Scholar 

  64. Tanigawa K, Nagase H, Ohmori K, et al.: Species-specific differences in the glucocorticoid receptor transactivation function upon binding with betamethasone-esters. Int Immunopharmacol 2002, 2:941–950.

    Article  PubMed  CAS  Google Scholar 

  65. Lin CW, Nakane M, Stashko M, et al.: trans-Activation and repression properties of the novel nonsteroid glucocorticoid receptor ligand 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y 1)-1H-[1]benzopyrano[ 3,4-f]quinoline (A276575) and its four stereoisomers. Mol Pharmacol 2002, 62:297–303.

    Article  PubMed  CAS  Google Scholar 

  66. Schacke H, Hennekes H, Schottelius A, et al.: SEGRAs: a novel class of anti-inflammatory compounds. Ernst Schering Res Found Workshop 2002, 40:357–371. This paper gives a background to the concept of dissociated glucocorticoids and provides evidence for the potential clinical efficacy of nonsteroidal glucocorticoids.

    PubMed  Google Scholar 

  67. Turlais F, Hardcastle A, Rowlands M, et al.: High-throughput screening for identification of small molecule inhibitors of histone acetyltransferases using scintillating microplates (FlashPlate). Anal Biochem 2001, 298:62–68.

    Article  PubMed  CAS  Google Scholar 

  68. Ito K, Lim S, Caramori G, Cosio B, et al.: A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci USA 2002, 99:8921–8926.

    Article  PubMed  CAS  Google Scholar 

  69. Barnes PJ: Theophylline: new perspectives for an old drug. Am J Respir Crit Care Med 2003. (In Press.)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adcock, I.M. Glucocorticoids: New mechanisms and future agents. Curr Allergy Asthma Rep 3, 249–257 (2003). https://doi.org/10.1007/s11882-003-0047-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-003-0047-0

Keywords

Navigation