Skip to main content

Advertisement

Log in

Neutrophils in asthma pathophysiology

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Although the role of eosinophils, mast cells, and T cells in asthma has long been recognized, several reports suggest that neutrophils may also be involved. In most studies of people with mild asthma, neutrophil numbers in the airways are not different from controls. However, in severe asthma, including asthma deaths, neutrophils are usually raised. Furthermore, most pediatric studies suggest that neutrophils are raised in some children, in particular in the young or infantile wheeze group. Measurements of inflammatory mediators in the airways of asthmatic subjects suggest that neutrophils are activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Global Initiative for Asthma: Global Strategy for Asthma Management and Prevention (updated 2002). Accessible at http:// www.ginasthma.com/. Accessed on August 5 2002. Up-to-date key source for information about asthma covering all aspects, including definitions, burden of asthma, risk factors, mechanisms of asthma, diagnosis and classification, education, delivery of care, and asthma management.

  2. Douwes J, Gibson P, Pekkanen J, Pearce N: Non-eosinophilic asthma: importance and possible mechanisms. Thorax 2002, 57:643–648. In this review article, a series of different studies that documented airway eosinophils in a general asthmatic population are analyzed. Eosinophils were involved in only approximately 50% of the subjects, with increased neutrophil and IL-8 levels associated with most studies of noneosinophilic asthma.

    Article  PubMed  CAS  Google Scholar 

  3. Taha RA, Laberge S, Hamid Q, Olivenstein R: Increased expression of the chemoattractant cytokines eotaxin, monocyte chemotactic protein-4, and interleukin-16 in induced sputum in asthmatic patients. Chest 2001, 120:595–601.

    Article  PubMed  CAS  Google Scholar 

  4. Keatings VM, Collins PD, Scott DM, Barnes PJ: Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996, 153:530–534.

    PubMed  CAS  Google Scholar 

  5. Gibson PG, Simpson JL, Saltos N: Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001, 119:1329–1336.

    Article  PubMed  CAS  Google Scholar 

  6. Boulet LP, Turcotte H, Boutet M, et al.: Influence of natural antigenic exposure on expiratory flows, methacholine responsiveness, and airway inflammation in mild allergic asthma. J Allergy Clin Immunol 1993, 91:883–893.

    Article  PubMed  CAS  Google Scholar 

  7. Van Vyve T, Chanez P, Lacoste JY, et al.: Comparison between bronchial and alveolar samples of bronchoalveolar lavage fluid in asthma. Chest 1992, 102:356–361.

    PubMed  Google Scholar 

  8. Stenfors N, Pourazar J, Blomberg A, et al.: Effect of ozone on bronchial mucosal inflammation in asthmatic and healthy subjects. Respir Med 2002, 96:352–358. This is a carefully conducted study that examines bronchial washes, bronchoalveolar lavage, and biopsies from mild asthmatics and control subjects after exposure to either ozone or air. At baseline, asthmatics had higher neutrophil counts in bronchial wash, BAL, bronchial epithelium, and bronchial submucosa than control subjects did. Neutrophilic airway responses were seen in both control subjects and mild asthmatics exposed to ozone.

    Article  PubMed  CAS  Google Scholar 

  9. Lamblin C, Gosset P, Tillie-Leblond I, et al.: Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Respir Crit Care Med 1998, 157:394–402.

    PubMed  CAS  Google Scholar 

  10. Hood PP, Cotter TP, Costello JF, Sampson AP: Effect of intravenous corticosteroid on ex vivo leukotriene generation by blood leucocytes of normal and asthmatic patients. Thorax 1999, 54:1075–1082.

    Article  PubMed  CAS  Google Scholar 

  11. Chanez P, Enander I, Jones I, et al.: Interleukin 8 in bronchoalveolar lavage of asthmatic and chronic bronchitis patients. Int Arch Allergy Immunol 1996, 111:83–88.

    PubMed  CAS  Google Scholar 

  12. Maruyama N, Tamura G, Aizawa T, et al.: Accumulation of basophils and their chemotactic activity in the airways during natural airway narrowing in asthmatic individuals. Am J Respir Crit Care Med 1994, 150:1086–1093.

    PubMed  CAS  Google Scholar 

  13. Lacoste JY, Bousquet J, Chanez P, et al.: Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allergy Clin Immunol 1993, 92:537–548.

    Article  PubMed  CAS  Google Scholar 

  14. Bousquet J, Chanez P, Lacoste JY, et al.: Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J Allergy Clin Immunol 1991, 88:649–660.

    Article  PubMed  CAS  Google Scholar 

  15. Ndukwu IM, Naureckas ET, Maxwell C, et al.: Relationship of cellular transmigration and airway response after allergen challenge. Am J Respir Crit Care Med 1999, 160:1516–1524.

    PubMed  CAS  Google Scholar 

  16. Rak S, Bjornson A, Hakanson L, et al.: The effect of immunotherapy on eosinophil accumulation and production of eosinophil chemotactic activity in the lung of subjects with asthma during natural pollen exposure. J Allergy Clin Immunol 1991, 88:878–888.

    Article  PubMed  CAS  Google Scholar 

  17. Frangova V, Sacco O, Silvestri M, et al.: BAL neutrophilia in asthmatic patients: a by-product of eosinophil recruitment? Chest 1996, 110:1236–1242.

    PubMed  CAS  Google Scholar 

  18. Nocker RE, Schoonbrood DF, van de Graaf EA, et al.: Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 1996, 109:183–191.

    Article  PubMed  CAS  Google Scholar 

  19. Wenzel SE, Szefler SJ, Leung DY, et al.: Bronchoscopic evaluation of severe asthma: persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 1997, 156:737–743.

    PubMed  CAS  Google Scholar 

  20. Tanizaki Y, Kitani H, Okazaki M, et al.: Changes in the proportions of bronchoalveolar lymphocytes, neutrophils and basophilic cells and the release of histamine and leukotrienes from bronchoalveolar cells in patients with steroiddependent intractable asthma. Int Arch Allergy Immunol 1993, 101:196–202.

    Article  PubMed  CAS  Google Scholar 

  21. Tanizaki Y, Kitani H, Okazaki M, et al.: Effects of long-term glucocorticoid therapy on bronchoalveolar cells in adult patients with bronchial asthma. J Asthma 1993, 30:309–318.

    PubMed  CAS  Google Scholar 

  22. Tanizaki Y, Kitani H, Okazaki M, et al.: Airway inflammation and bronchial hyperresponsiveness in patients with asthma: comparison between atopic and nonatopic asthma. Arerugi 1993, 42:26–33.

    PubMed  CAS  Google Scholar 

  23. Gibson PG, Allen CJ, Yang JP, et al.: Intraepithelial mast cells in allergic and nonallergic asthma: assessment using bronchial brushings. Am Rev Respir Dis 1993, 148:80–86.

    PubMed  CAS  Google Scholar 

  24. Mattoli S, Mattoso VL, Soloperto M, et al.: Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. J Allergy Clin Immunol 1991, 87:794–802.

    Article  PubMed  CAS  Google Scholar 

  25. Martin RJ, Cicutto LC, Smith HR, et al.: Airways inflammation in nocturnal asthma. Am Rev Respir Dis 1991, 143:351–357.

    PubMed  CAS  Google Scholar 

  26. Paggiaro P, Bacci E, Paoletti P, et al.: Bronchoalveolar lavage and morphology of the airways after cessation of exposure in asthmatic subjects sensitized to toluene diisocyanate. Chest 1990, 98:536–542.

    PubMed  CAS  Google Scholar 

  27. Frew AJ, Chan H, Lam S, Chan-Yeung M: Bronchial inflammation in occupational asthma due to western red cedar. Am J Respir Crit Care Med 1995, 151:340–344.

    PubMed  CAS  Google Scholar 

  28. Chan-Yeung M, Leriche J, Maclean L, Lam S: Comparison of cellular and protein changes in bronchial lavage fluid of symptomatic and asymptomatic patients with red cedar asthma on follow-up examination. Clin Allergy 1988, 18:359–365.

    Article  PubMed  CAS  Google Scholar 

  29. Wenzel SE, Schwartz LB, Langmack EL, et al.: Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999, 160:1001–1008.

    PubMed  CAS  Google Scholar 

  30. Sur S, Crotty TB, Kephart GM, et al.: Sudden-onset fatal asthma: a distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Respir Dis 1993, 148:713–719.

    PubMed  CAS  Google Scholar 

  31. Carroll N, Carello S, Cooke C, James A: Airway structure and inflammatory cells in fatal attacks of asthma. Eur Respir J 1996, 9:709–715.

    Article  PubMed  CAS  Google Scholar 

  32. Carroll NG, Mutavdzic S, James AL: Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 2002, 57:677–682.

    Article  PubMed  CAS  Google Scholar 

  33. Silvestri M, Oddera S, Sacco O, et al.: Bronchial and bronchoalveolar inflammation in single early and dual responders after allergen inhalation challenge. Lung 1997, 175:277–285.

    Article  PubMed  CAS  Google Scholar 

  34. Rossi GA, Crimi E, Lantero S, et al.: Late-phase asthmatic reaction to inhaled allergen is associated with early recruitment of eosinophils in the airways. Am Rev Respir Dis 1991, 144:379–383.

    PubMed  CAS  Google Scholar 

  35. Calhoun WJ, Bush RK: Enhanced reactive oxygen species metabolism of airspace cells and airway inflammation follow antigen challenge in human asthma. J Allergy Clin Immunol 1990, 86:306–313.

    Article  PubMed  CAS  Google Scholar 

  36. Diaz P, Gonzalez MC, Galleguillos FR, et al.: Leukocytes and mediators in bronchoalveolar lavage during allergeninduced late-phase asthmatic reactions. Am Rev Respir Dis 1989, 139:1383–1389.

    PubMed  CAS  Google Scholar 

  37. Hohlfeld JM, Ahlf K, Enhorning G, et al.: Dysfunction of pulmonary surfactant in asthmatics after segmental allergen challenge. Am J Respir Crit Care Med 1999, 159:1803–1809.

    PubMed  CAS  Google Scholar 

  38. Liu MC, Proud D, Lichtenstein LM, et al.: Effects of prednisone on the cellular responses and release of cytokines and mediators after segmental allergen challenge of asthmatic subjects. J Allergy Clin Immunol 2001, 108:29–38.

    Article  PubMed  CAS  Google Scholar 

  39. Kelly EA, Busse WW, Jarjour NN: Increased matrix metalloproteinase-9 in the airway after allergen challenge. Am J Respir Crit Care Med 2000, 162:1157–1161.

    PubMed  CAS  Google Scholar 

  40. Nocker RE, Out TA, Weller FR, et al.: Influx of neutrophils into the airway lumen at 4 h after segmental allergen challenge in asthma. Int Arch Allergy Immunol 1999, 119:45–53.

    Article  PubMed  CAS  Google Scholar 

  41. Teran LM, Carroll MP, Frew AJ, et al.: Leukocyte recruitment after local endobronchial allergen challenge in asthma: relationship to procedure and to airway interleukin-8 release. Am J Respir Crit Care Med 1996, 154:469–476.

    PubMed  CAS  Google Scholar 

  42. Liu MC, Hubbard WC, Proud D, et al.: Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics: cellular, mediator, and permeability changes. Am Rev Respir Dis 1991, 144:51–58.

    PubMed  CAS  Google Scholar 

  43. Virchow JC Jr, Walker C, Hafner D, et al.: T cells and cytokines in bronchoalveolar lavage fluid after segmental allergen provocation in atopic asthma. Am J Respir Crit Care Med 1995, 151:960–968.

    PubMed  Google Scholar 

  44. Basha MA, Gross KB, Gwizdala CJ, et al.: Bronchoalveolar lavage neutrophilia in asthmatic and healthy volunteers after controlled exposure to ozone and filtered purified air. Chest 1994, 106:1757–1765.

    PubMed  CAS  Google Scholar 

  45. Vagaggini B, Taccola M, Conti I, et al.: Budesonide reduces neutrophilic but not functional airway response to ozone in mild asthmatics. Am J Respir Crit Care Med 2001, 164:2172–2176.

    PubMed  CAS  Google Scholar 

  46. Hiltermann JT, Lapperre TS, van Bree L, et al.: Ozone-induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics: a new noninvasive tool in epidemiologic studies on air pollution and asthma. Free Radic Biol Med 1999, 27:1448–1445.

    Article  PubMed  CAS  Google Scholar 

  47. Little SA, MacLeod KJ, Chalmers GW, et al.: Association of forced expiratory volume with disease duration and sputum neutrophils in chronic asthma. Am J Med 2002, 112:446–452.

    Article  PubMed  Google Scholar 

  48. Frew AJ, St-Pierre J, Teran LM, et al.: Cellular and mediator responses twenty-four hours after local endobronchial allergen challenge of asthmatic airways. J Allergy Clin Immunol 1996, 98:133–143.

    Article  PubMed  CAS  Google Scholar 

  49. Yousefi S, Hemmann S, Weber M, et al.: IL-8 is expressed by human peripheral blood eosinophils: evidence for increased secretion in asthma. J Immunol 1995, 154:5481–5490.

    PubMed  CAS  Google Scholar 

  50. Teran LM, Campos MG, Begishvilli BT, et al.: Identification of neutrophil chemotactic factors in bronchoalveolar lavage fluid of asthmatic patients. Clin Exp Allergy 1997, 27:396–405.

    Article  PubMed  CAS  Google Scholar 

  51. Park CS, Cho SW, Lee SY, et al.: Neutrophil chemotactic activities in bronchoalveolar lavage fluid from patients with bronchial asthma. Korean J Intern Med 1995, 10:16–24.

    PubMed  CAS  Google Scholar 

  52. Wardlaw AJ, Hay H, Cromwell O, et al.: Leukotrienes, LTC4 and LTB4, in bronchoalveolar lavage in bronchial asthma and other respiratory diseases. J Allergy Clin Immunol 1989, 84:19–26.

    Article  PubMed  CAS  Google Scholar 

  53. Krug N, Tschernig T, Erpenbeck VJ, et al.: Complement factors C3a and C5a are increased in bronchoalveolar lavage fluid after segmental allergen provocation in subjects with asthma. Am J Respir Crit Care Med 2001, 164:1841–1843.

    PubMed  CAS  Google Scholar 

  54. Warner JO, Naspitz CK, Cropp GJA: Third International Pediatric Consensus statement on the management of childhood asthma. Pediatr Pulmonol 1998, 25:1–17.

    Article  PubMed  CAS  Google Scholar 

  55. Barbato A, Panizzolo C, Gheno M, et al.: Bronchoalveolar lavage in asthmatic children: evidence of neutrophil activation in mild-to-moderate persistent asthma. Pediatr Allergy Immunol 2001, 12:73–77.

    Article  PubMed  CAS  Google Scholar 

  56. Marguet C, Jouen-Boedes F, Dean TP, Warner JO: Bronchoalveolar cell profiles in children with asthma, infantile wheeze, chronic cough, or cystic fibrosis. Am J Respir Crit Care Med 1999, 159:1533–1540.

    PubMed  CAS  Google Scholar 

  57. Marguet C, Dean TP, Basuyau JP, Warner JO: Eosinophil cationic protein and interleukin-8 levels in bronchial lavage fluid from children with asthma and infantile wheeze. Pediatr Allergy Immunol 2001, 12:27–33.

    Article  PubMed  CAS  Google Scholar 

  58. Stevenson EC, Turner G, Heaney LG, et al.: Bronchoalveolar lavage findings suggest two different forms of childhood asthma. Clin Exp Allergy 1997, 27:1027–1035.

    Article  PubMed  CAS  Google Scholar 

  59. Kim CK, Chung CY, Choi SJ, et al.: Bronchoalveolar lavage cellular composition in acute asthma and acute bronchiolitis. J Pediatr 2000, 137:517–522.

    Article  PubMed  CAS  Google Scholar 

  60. Krawiec ME, Westcott JY, Chu HW, et al.: Persistent wheezing in very young children is associated with lower respiratory inflammation. Am J Respir Crit Care Med 2001, 163:1338–1343. In very young, wheezy children, without airway infection, both neutrophils and eosinophils are raised in BAL fluid. This suggests that there may be different underlying mechanisms in childhood and adult disease.

    PubMed  CAS  Google Scholar 

  61. Midulla F, Villani A, Merolla R, et al.: Bronchoalveolar lavage studies in children without parenchymal lung disease: cellular constituents and protein levels. Pediatr Pulmonol 1995, 20:112–118.

    Article  PubMed  CAS  Google Scholar 

  62. Fitch PS, Brown V, Schock BC, et al.: Chronic cough in children: bronchoalveolar lavage findings. Eur Respir J 2000, 16:1109–1114.

    Article  PubMed  CAS  Google Scholar 

  63. Twaddell SH, Gibson PG, Carty K, et al.: Assessment of airway inflammation in children with acute asthma using induced sputum. Eur Respir J 1996, 9:2104–2108.

    Article  PubMed  CAS  Google Scholar 

  64. Chalmers GW, MacLeod KJ, Thomson L, et al.: Smoking and airway inflammation in patients with mild asthma. Chest 2001, 120:1917–1922. This study highlights the importance of controlling for smoking history when examining airway neutrophil counts and measuring neutrophil-derived mediators.

    Article  PubMed  CAS  Google Scholar 

  65. Belda J, Hussack P, Dolovich M, et al.: Sputum induction: effect of nebulizer output and inhalation time on cell counts and fluid-phase measures. Clin Exp Allergy 2001, 31:1740–1744.

    Article  PubMed  CAS  Google Scholar 

  66. Hunt LW, Gleich GJ, Ohnishi T, et al.: Endotoxin contamination causes neutrophilia following pulmonary allergen challenge. Am J Respir Crit Care Med 1994, 149:1471–1475.

    PubMed  CAS  Google Scholar 

  67. Cox G: Glucocorticoid treatment inhibits apoptosis in human neutrophils: separation of survival and activation outcomes. J Immunol 1995, 154:4719–4725.

    PubMed  CAS  Google Scholar 

  68. Ratjen F, Bredendiek M, Brendel M, et al.: Differential cytology of bronchoalveolar lavage fluid in normal children. Eur Respir J 1994, 7:1865–1870.

    Article  PubMed  CAS  Google Scholar 

  69. Riedler J, Grigg J, Stone C, et al.: Bronchoalveolar lavage cellularity in healthy children. Am J Respir Crit Care Med 1995, 152:163–168.

    PubMed  CAS  Google Scholar 

  70. Heaney LG, Stevenson EC, Turner G, et al.: Investigating paediatric airways by non-bronchoscopic lavage: normal cellular data. Clin Exp Allergy 1996, 26:799–806.

    Article  PubMed  CAS  Google Scholar 

  71. Ferguson AC, Wong FW: Bronchial hyperresponsiveness in asthmatic children: correlation with macrophages and eosinophils in broncholavage fluid. Chest 1989, 96:988–991.

    PubMed  CAS  Google Scholar 

  72. Just J, Fournier L, Momas I, et al.: Clinical significance of bronchoalveolar eosinophils in childhood asthma. Allergy Clin Immunol 2002, 110:42–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ennis, M. Neutrophils in asthma pathophysiology. Curr Allergy Asthma Rep 3, 159–165 (2003). https://doi.org/10.1007/s11882-003-0029-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-003-0029-2

Keywords

Navigation