Skip to main content

Advertisement

Log in

Airway vascular remodeling in asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Several characteristic changes occur in the bronchial wall in asthma, including specific changes to the vasculature. These result in an increase in vessel numbers per unit area, as well as increased vessel activity suggested by vasodilatation, vessel leakage, and cellular margination with transmigration to target tissues. This combined action in asthma leads to airway-wall thickening and reduced airflow. Each component of the vascular response has been shown to be controlled by a range of inflammatory mediators and growth factors. These factors are themselves regulated by a complex process initially involving gene expression, transcription, and translation at the molecular level, then subsequent protein release, binding to matrix elements, endothelial cell activation, and a proliferative endothelial response. Many commonly used airway medications are capable of modulating the vascular response to inflammatory stimuli. New therapies might improve airflow through better regulation of vessel growth, dilatation, and leakage in the airway wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wilson J: The bronchial microcirculation in asthma. Clin Exp Allergy 2000, 30:51–53.

    Article  PubMed  Google Scholar 

  2. Corfield DR, Hanafi Z, Webber SE, Widdicombe JG: Changes in tracheal mucosal thickness and blood flow in sheep. J Appl Physiol 1991, 71:1282–1288.

    PubMed  CAS  Google Scholar 

  3. McDonald DM: The ultrastructure and permeability of tracheobronchial blood vessels in health and disease. Eur Respir J 1990, 12:572S-585S.

    CAS  Google Scholar 

  4. Widdicombe J: Why are the airways so vascular? Thorax 1993, 48:290–295. A useful description of the anatomy of airway circulation.

    Article  PubMed  CAS  Google Scholar 

  5. Jakeman LB, Armanini M, Phillips HS, Ferrara N: Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology 1993, 133:848–859.

    Article  PubMed  CAS  Google Scholar 

  6. deVries C, Escobedo JA, Ueno H, et al.: The fms-like tyrosine kinase: a receptor for vascular endothelial growth factor. Science 1992, 255:989–991.

    Article  CAS  Google Scholar 

  7. Terman BI, Dougher-Vermazen M, Carrion ME, et al.: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Comm 1992, 187:1579–1586.

    Article  PubMed  CAS  Google Scholar 

  8. Morishita K, Johnson DE, Williams LT: A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J Biol Chem 1995, 270:27948–27953.

    Article  PubMed  CAS  Google Scholar 

  9. Patterson C, Perrella MA, Hsieh CM, et al.: Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J Biol Chem 1995, 270:23111–23118.

    Article  PubMed  CAS  Google Scholar 

  10. Wegner CD, Wolyniec WW, La Plante, et al.: Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 1990, 247:456–459. This description of blockade of ICAM-1 is an important demonstration of the importance of the role of vessels and adhesion glycoproteins in asthma.

    Article  PubMed  CAS  Google Scholar 

  11. Maisonpierre PC, Suri C, Jones PF, et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997, 277:55–60.

    Article  PubMed  CAS  Google Scholar 

  12. O’Reilly M, Silver GM, Gamelli RL, et al.: Dose dependency of granulocyte-macrophage colony stimulating factor for improving survival following burn wound infection. J Trauma 1994, 36:486–490.

    Article  PubMed  CAS  Google Scholar 

  13. Auerbach W, Auerbach R: Angiogenesis inhibition: a review. Pharmacol Ther 1994, 63:265–311.

    Article  PubMed  CAS  Google Scholar 

  14. Voest EE, Kenyon BM, O’Reilly MS, et al.: Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 1995, 87:581–586.

    Article  PubMed  CAS  Google Scholar 

  15. Strieter RM: Chemokines: not just leukocyte chemoattractants in the promotion of cancer. 2001, 2:285-286. A good summary of potential roles of growth factors in angiogenesis.

  16. Carroll N, Elliott J, Morton A, James A: The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 1993, 147:405–410.

    PubMed  CAS  Google Scholar 

  17. Kuwano K, Bosken CH, Pare PD, et al.: Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1993, 148:1220–1225.

    PubMed  CAS  Google Scholar 

  18. Djukanovic R, Wilson JW, Lai CK, et al.: The safety aspects of fiberoptic bronchoscopy, bronchoalveolar lavage, and endobronchial biopsy in asthma. Am Rev Respir Dis 1991, 143(4 Pt 1):772–777.

    PubMed  CAS  Google Scholar 

  19. Carroll NG, Cooke C, James AL: Bronchial blood vessel dimensions in asthma. Am J Respir Crit Care Med 1997, 155:689–695.

    PubMed  CAS  Google Scholar 

  20. Li X, Wilson JW: Increased vascularity of the bronchial mucosa in mild asthma. Am J Respir Crit Care Med 1997, 156:229–233. The first description of the use of collagen IV as a marker for vessels in airway biopsies in asthma.

    PubMed  CAS  Google Scholar 

  21. Wilson JW, Bamford TL: Assessing the evidence for remodelling of the airway in asthma. Pulm Pharmacol 2001, 14:229–247.

    Article  CAS  Google Scholar 

  22. Bradding P, Holgate ST: Immunopathology and human mast cell cytokines. Crit Rev Oncol Hematol 1999, 31:119–133.

    PubMed  CAS  Google Scholar 

  23. Holgate ST, Djukanovic P, Wilson J, et al.: Allergic inflammation and its pharmacological modulation in asthma. Int Arch Allergy Appl Immunol 1991, 94:210–217.

    PubMed  CAS  Google Scholar 

  24. Lovett D, Kozan B, Hadam M, et al.: Macrophage cytotoxicity: interleukin 1 as a mediator of tumor cytostasis. J Immunol 1986, 136:340–347.

    PubMed  CAS  Google Scholar 

  25. Bradding P, Roberts JA, Britten KM, et al.: Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 1994, 10:471–480.

    PubMed  CAS  Google Scholar 

  26. D’Amore PA: Mechanisms of endothelial growth control. Am J Respir Cell Mol Biol 1992, 6:1–8.

    PubMed  CAS  Google Scholar 

  27. Ferrara N, Henzel WJ: Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Comm 1989, 161:851–858.

    Article  PubMed  CAS  Google Scholar 

  28. Dunnill MS: The pathology of asthma, with special reference to the bronchial mucosa. J Clin Pathol 1960, 13:27–33.

    PubMed  CAS  Google Scholar 

  29. Wilson JW, Wilson SJ: The bronchial microcirculation. Clin Exp Allergy Revs 2001, 1:120–122.

    Article  Google Scholar 

  30. McDonald DM: Neurogenic inflammation in the rat trachea. I. Changes in venules, leucocytes and epithelial cells. J Neurocytol 1988, 17:583–603.

    Article  PubMed  CAS  Google Scholar 

  31. McDonald DM, Mitchell RA, Gabella G, Haskell A: Neurogenic inflammation in the rat trachea. II. Identity and distribution of nerves mediating the increase in vascular permeability. J Neurocytol 1988, 17:605–628.

    Article  PubMed  CAS  Google Scholar 

  32. Wiggs BR, Bosken C, Pare PD, et al.: A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1992, 145:1251–1258.

    PubMed  CAS  Google Scholar 

  33. Mitzner W, Wagner E, Brown RH: Is asthma a vascular disorder? Chest 1995, 107(3 Suppl):97S-102S. A key reference that summarizes the importance of modeling studies identifying the role of bronchial vessels in airflow obstruction.

    PubMed  CAS  Google Scholar 

  34. Wilson JW, Li X, Pain MC: The lack of distensibility of asthmatic airways. Am Rev Respir Dis 1993, 148:806–809.

    PubMed  CAS  Google Scholar 

  35. Wilson JW, Li X: The measurement of reticular basement membrane and submucosal collagen in the asthmatic airway [see comments]. Clin Exper Allergy 1997, 27:363–371.

    Article  CAS  Google Scholar 

  36. Ebina M, Takahashi T, Chiba T, Motomiya M: Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma: a 3-D morphometric study. Am Rev Respir Dis 1993, 148:720–726.

    PubMed  CAS  Google Scholar 

  37. Smith JC, Mitzner W: Elastic characteristics of the lung perivascular interstitial space. J Appl Physiol 1983, 54:1717–1725.

    Article  PubMed  CAS  Google Scholar 

  38. Rushmer FJ: Cardiovascular Dynamics, 2nd edn. Philadelphia: WB Saunders; 1961:470–471.

    Google Scholar 

  39. Gleason DC, Steiner RE: The lateral roentgenogram in pulmonary edema. Am J Roentgenol Rad Ther Nucl Med 1966, 98:279–290.

    CAS  Google Scholar 

  40. Cabanes LR, Weber SN, Matran R, et al.: Bronchial hyperresponsiveness to methacholine in patients with impaired left ventricular function. N Engl J Med 1989, 320:1317–1322.

    Article  PubMed  CAS  Google Scholar 

  41. Wagner EM, Mitzner WA: Effect of left atrial pressure on bronchial vascular hemodynamics. J Appl Physiol 1990, 69:837–842.

    PubMed  CAS  Google Scholar 

  42. Brown RH, et al.: In vivo measurements of airway reactivity using high-resolution computed tomography. Am Rev Respir Dis 1991, 144:208–212.

    PubMed  CAS  Google Scholar 

  43. Brown RH, Herold CJ, Hirshman CA, et al.: Individual airway constrictor response heterogeneity to histamine assessed by high-resolution computed tomography. J Appl Physiol 1993, 74:2615–2620.

    PubMed  CAS  Google Scholar 

  44. Lockhart A, Dinh-Xuan AT, Regnard J, et al.: Effect of airway blood flow on airflow. Am Rev Respir Dis 1992, 146(5 Pt 2):S19–23.

    PubMed  CAS  Google Scholar 

  45. Laitinen LA, Laitinen MA, Widdicombe JG: Dose-related effects of pharmacological mediators on tracheal vascular resistance in dogs. Br J Pharmacol 1987, 92:703–709.

    PubMed  CAS  Google Scholar 

  46. Orsida BE, Ward C, Li X, et al.: Effect of a long-acting beta2-agonist over three months on airway wall vascular remodeling in asthma. Am J Respir Critl Care Med 2001, 164:117–121.

    CAS  Google Scholar 

  47. Orsida BE, Li X, Hickey B, et al.: Vascularity in asthmatic airways: relation to inhaled steroid dose. Thorax 1999, 54:289–295.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J.W., Kotsimbos, T. Airway vascular remodeling in asthma. Curr Allergy Asthma Rep 3, 153–158 (2003). https://doi.org/10.1007/s11882-003-0028-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-003-0028-3

Keywords

Navigation