Skip to main content

Advertisement

Log in

Neurogenic mechanisms in rhinosinusitis

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Nasal sensory nerve stimulation leads to sensations of pain and congestion and nociceptive nerve axon responsemediated release of substance P that stimulates glandular secretion as an immediate-acting protective mucosal defense. Recruited parasympathetic reflexes cause submucosal gland secretion via muscarinic M3 receptors. Parasympathetic reflexes, sneezing, and other avoidance behaviors rapidly clear the upper airway of offending agents while protecting the lower airways. Dysfunction contributes to allergic, infectious, and other nonallergic rhinitides and possibly sinusitis. Sympathetic arterial vasoconstriction reduces mucosal blood flow, sinusoidal filling, and mucosal thickness, restoring nasal patency. Loss of sympathetic tone may contribute to some chronic, nonallergic rhinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Baraniuk JN: Mechanisms of rhinitis. In Rhinitis Immunology and Allergy Clinics of North America vol 20. Edited by Lasley MV, Altman LC. Philadelphia: Saunders; 2000:245–264.

    Google Scholar 

  2. Casale T, Baraniuk JN: Neural mechanisms. In Allergy: Principles and Practice. Edited by Middleton E, Reed C, Ellis C, et al. St. Louis: Mosby; 2000, in press.

    Google Scholar 

  3. Barnes PJ, Baraniuk JN, Belvisi MG: Neuropeptides in the respiratory tract: part I. Am Rev Respir Dis 1991, 144:1187–1198.

    PubMed  CAS  Google Scholar 

  4. Barnes PJ, Baraniuk JN, Belvisi MG: Neuropeptides in the respiratory tract: part II. Am Rev Respir Dis 1991, 144:1391–1399.

    PubMed  CAS  Google Scholar 

  5. Calliet R: Head and Face Pain Syndromes. In Philadelphia: FA Davis; 1992.

    Google Scholar 

  6. Low DE, Desrosiers M, McSherry J, et al.: A practical guide for the diagnosis and treatment of acute sinusitis. CMAJ 1997, 156(suppl 6):S1-S14.

    PubMed  Google Scholar 

  7. Demski LS, Schwanzel-Fukuda M: The terminal nerve (nervus terminalis). Ann N Y Acad Sci 1987, 519:1–213.

    Article  PubMed  CAS  Google Scholar 

  8. Dray A, Urban L, Dickenson A: Pharmacology of chronic pain. Trends Pharmacol Sci 1994, 15:190–197.

    Article  PubMed  CAS  Google Scholar 

  9. Lucier GE, Egizii R: Characterization of cat nasal afferents and brain stem neurones receiving ethmoidal input. Exp Neurol 1989, 103:83–89.

    Article  PubMed  CAS  Google Scholar 

  10. Wallois F, Gros F, Condamin M, Macron JM: Postnatal development of the anterior ethmoidal nerve in cats: unmyelinated and myelinated nerve fiber analysis. Neurosci Lett 1993, 160:221–224.

    Article  PubMed  CAS  Google Scholar 

  11. Raphael GD, Igarashi Y, White MV, Kaliner MA: The pathophysiology of rhinitis: V: Sources of protein in allergen-induced nasal secretions. J Allergy Clin Immunol 1991, 88:33–43.

    Article  PubMed  CAS  Google Scholar 

  12. Caterina MJ, Schumacher MA, Tominaga M, et al.: The capsaicin receptor: a heat-activated ion channel in the pain pathway [see comments]. Nature 1997, 389:816–824.

    Article  PubMed  CAS  Google Scholar 

  13. Tominaga M, Caterina MJ, Malmberg AB, et al.: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21:531–543.

    Article  PubMed  CAS  Google Scholar 

  14. Caterina MJ, Leffler A, Malmberg AB, et al.: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288:306–313. The functions of capsaicin receptors on type C nociceptive nerves were further refined in this murine model.

    Article  PubMed  CAS  Google Scholar 

  15. Dale HH: Pharmacology and nerve endings. Proc R Soc Med 1935, 68:319.

    Google Scholar 

  16. McDonald DM: Neurogenic inflammation in the rat trachea: I: changes in venules, leukocytes and epithelial cells. J Neurocytol 1988, 17:605–628.

    Article  PubMed  CAS  Google Scholar 

  17. Smith CH, Barker JNWN, Morris RW, et al.: Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J Immunol 1993, 151:3274–3282.

    PubMed  CAS  Google Scholar 

  18. Rinder J: Sensory neuropeptides and nitric oxide in nasal vascular regulation. Acta Physiol Scand Suppl 1996, 632:1–45.

    PubMed  CAS  Google Scholar 

  19. Roques BP, Noble F, Dauge V, et al.: Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 1993, 45:87–146.

    PubMed  CAS  Google Scholar 

  20. Dutschmann M, Herbert H: The medial nucleus of the solitary tract mediates the trigeminally evoked pressor response. Neuroreport 1998, 9:1053–1057.

    PubMed  CAS  Google Scholar 

  21. Chen Z, Hedner J, Hedner T: Local effects of substance P on respiratory regulation in the rat medulla oblongata. J Appl Physiol 1990, 68:693–699.

    PubMed  CAS  Google Scholar 

  22. Kobzik L, Bredt DS, Lowenstein CJ, et al.: Nitric oxide synthetase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol 1993, 9:371–377.

    PubMed  CAS  Google Scholar 

  23. Runer T, Cervin A, Lindberg S, Uddman R: Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol Head Neck Surg 1998, 119:278–287.

    Article  PubMed  CAS  Google Scholar 

  24. Levine RR, Birdsall NJM, North RA, et al.: Subtypes of muscarinic receptors III. Trends Pharmacol Sci 1991, 9(suppl):1–93.

    Google Scholar 

  25. Mak JCW, Barnes PJ: Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis 1990, 141:1559–1568.

    PubMed  CAS  Google Scholar 

  26. Okayama M, Baraniuk JN, Merida M, Kaliner MA: Autoradiographic localization of muscarinic receptor subtypes in human nasal mucosa. Am J Respir Cell Mol Biol 1993, 8:176–185.

    PubMed  CAS  Google Scholar 

  27. Cervin A, Lindberg S, Mercke U, Uddman R: Neuropeptide Y in the rabbit maxillary sinus modulates cholinergic acceleration of mucociliary activity. Acta Otolaryngol 1992, 112:872–881.

    PubMed  CAS  Google Scholar 

  28. Anderson SD, Daviskas E: The mechanism of exercise-induced asthma is…. J Allergy Clin Immunol 2000, 106:453–459.

    Article  PubMed  CAS  Google Scholar 

  29. Wagenmann M, Baroody FM, Desrosiers M, et al.: Unilateral nasal allergen challenge leads to bilateral release of prostaglandin D2. Clin Exp Allergy 1996, 26:371–378.

    Article  PubMed  CAS  Google Scholar 

  30. Mossiman BL, White MV, Hohman RJ, et al.: Substance P, calcitonin-gene related peptide, and vasoactive intestinal peptide increase in nasal secretions after allergen challenge in atopic patients. J Allergy Clin Immunol 1993, 92:95–104.

    Article  Google Scholar 

  31. Tomaki M, Ichinose M, Miura M, et al.: Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med 1995, 151:613–617.

    PubMed  CAS  Google Scholar 

  32. Baraniuk JN, Ali M, Yuta A, et al.: Hypertonic saline nasal provocation stimulates nociceptive nerves, substance P release, and glandular mucous exocytosis in normal humans. Am J Respir Crit Care Med 1999, 160:655–662. The human airway nociceptive nerve axon response was redefined. Hypertonic saline, a relevant airway irritant, led to pain, and SP release with presumed actions on NK1 receptors localized to glands led to exocrine secretion. Unlike in rodent tracheobronchial models, there were no vascular responses.

    PubMed  CAS  Google Scholar 

  33. Okayama Y, Shirotori K, Kudo K, et al.: Cytokine expression after the topical administration of substance P to human nasal mucosa. J Immunol 1993, 151:4391–4398.

    Google Scholar 

  34. Baraniuk JN, Silver PB, Kaliner MA, Barnes PJ: Perennial rhinitis subjects have altered vascular, glandular, and neural responses to bradykinin nasal provocation. Int Arch Allergy Immunol 1994, 103:202–208.

    Article  PubMed  CAS  Google Scholar 

  35. Ricchio MM, Reynolds CJ, Hay DW, Proud D: Effects of intranasal administration of endothelin-1 to allergic and nonallergic individuals. Am J Respir Crit Care Med 1995, 152:1757–1764.

    Google Scholar 

  36. Ricchio MM, Proud D: Evidence that enhanced neural reactivity to bradykinin in patients with symptomatic allergy is mediated by neural reflexes. J Allergy Clin Immunol 1996, 97:1252–1253.

    Article  Google Scholar 

  37. Druce HM, Wright RH, Kossoff D, Kaliner MA: Cholinergic nasal hyperreactivity in atopic subjects. J Allergy Clin Immunol 1985, 76:445–452.

    Article  PubMed  CAS  Google Scholar 

  38. Stjarne P, Lundblad L, Lundberg JM, Anggard A: Capsaicin and nicotine sensitive afferent neurones and nasal secretion in healthy human volunteers and in patients with vasomotor rhinitis. Br J Pharmacol 1989, 96:693–701.

    PubMed  CAS  Google Scholar 

  39. Raphael GD, Haupstein-Raphael M, Kaliner MA: Gustatory rhinitis: a syndrome of food-induced rhinorrhea. J Allergy Clin Immunol 1989, 83:110–115.

    Article  PubMed  CAS  Google Scholar 

  40. Norlander T, Bolger WE, Stierna P, et al.: A comparison of morphological effects on the rabbit nasal and sinus mucosa after surgical denervation and topical capsaicin application. Eur Arch Otorhinolaryngol 1996, 253:205–213.

    Article  PubMed  CAS  Google Scholar 

  41. Chasin WD, Lofgren RH: Vidian nerve section for vasomotor rhinitis. Arch Otolaryngol 1967, 86:103–109.

    PubMed  CAS  Google Scholar 

  42. Blom HM, van Rijwijk JB, Garrelds IM, et al.: Intranasal capsaicin is efficacious in non-allergic, non-infectious perennial rhinitis. Clin Exp Allergy 1997, 27:796–801.

    Article  PubMed  CAS  Google Scholar 

  43. Stjarne P, Lacroix JS, Anggard A, Lundberg JM: Compartment analysis of vascular effects of neuropeptides and capsaicin in the pig nasal mucosa. Acta Physiol Scand 1991, 141:335–342.

    Article  PubMed  CAS  Google Scholar 

  44. Willes S, Fitzgerald T, Bascom R: Nasal inhalation challenge studies with sidestream tobacco smoke. Arch Environ Health 1992, 47:223–230.

    Article  PubMed  CAS  Google Scholar 

  45. Baroody FM, Gungor A, deTineo M, et al.: Comparison of the response to histamine challenge of the nose and the maxillary sinus: effect of loratadine. J Appl Physiol 1999, 87:1038–1047. Instillation of histamine into the maxillary sinus could not stimulate nasal parasympathetic reflexes.

    PubMed  CAS  Google Scholar 

  46. Gungor A, Baroody FM, Naclerio RM, et al.: Decreased neuropeptide release may play a role in the pathogenesis of nasal polyps. Otolaryngol Head Neck Surg 1999, 121:585–590.

    Article  PubMed  CAS  Google Scholar 

  47. Bucca C, Rolla G, Scappaticci E, et al.: Extrathoracic and intrathoracic airway responsiveness in sinusitis. J Allergy Clin Immunol 1995, 95:52–59.

    Article  PubMed  CAS  Google Scholar 

  48. Rolla G, Colagrande P, Scappaticci E, et al.: Damage of the pharyngeal mucosal and hyperresponsiveness of airway in sinusitis. J Allergy Clin Immunol 1997, 100:52–57.

    Article  PubMed  CAS  Google Scholar 

  49. Naranch K, Park YJ, Repka-Ramirez SM, et al.: A tender sinus does not always mean sinusitis. J Allergy Clin Immunol 1999, 104:S211.

    Google Scholar 

  50. Chow JM: Rhinologic headaches. Otolaryngol Head Neck Surg 1994, 111:211–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baraniuk, J.N. Neurogenic mechanisms in rhinosinusitis. Curr Allergy Asthma Rep 1, 252–261 (2001). https://doi.org/10.1007/s11882-001-0016-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-001-0016-4

Keywords

Navigation