Skip to main content
Log in

Effects of transport patterns on chemical composition of sequential rain samples: trajectory clustering and principal component analysis approach

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The chemical composition and long-range transportation (LRT) of rain events were assessed in this study. For this purpose, a fully automated wet-only sequential sampler was used to differentiate between washout and rainout processes. The chemical composition of elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn) and ions (F, Cl, NO3 , SO4 −2, and NH4 +) were quantified in 172 rainwater samples. Cluster analysis (CA) statistical approach was used to classify the back trajectories of the rain events. The CA revealed a seven-cluster solution which provided better explanations for the effects of possible source regions on the receptor site. Consequently, principal component analysis (PCA) was conducted on the normalized cluster-based mean concentrations of the chemical species in order to statistically identify the similarities among the clusters. In conclusion, there were four main sources which strongly affected the chemical composition of precipitation in the study area namely: (i) anthropogenic pollutants from Southwestern and Eastern Europe, (ii) Saharan dust intrusion from Northern Africa, (iii) resuspension of crustal material from nearby regions, and (iv) marine aerosols from Mediterranean and the Black Sea. The proposed methodology combining trajectory cluster analysis, chemical analysis, and principal component analysis was satisfactory to identify the source regions of the trajectories carrying the observed pollutants to the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aikawa M, Hiraki T, Eiho J (2008) Study on the acidification and pollution of precipitation based on a data set collected on a 0.5-mm precipitation basis. Atmos Environ 42:7043–7049

    Article  CAS  Google Scholar 

  • Akkoyunlu BO, Dogrue M, Tayanc M, Oruc I (2013) Design and construction of a computer controlled automatic sequential rain sampler. Biotechnol Biotechnol Equip 27:3890–3895

    Article  CAS  Google Scholar 

  • Alastuey A, Querol X, Chaves A, Lopez-Soler A, Ruiz CR (2001) Wet-only sequential deposition in a rural area in north-eastern Spain. Tellus B 53:40–52

    Article  Google Scholar 

  • Al-Momani IF, Ataman OY, Anwari MA, Tuncel S, Köse C, Tuncel G (1995) Chemical composition of precipitation near an industrial area at Izmir, Turkey. Atmos Environ 29:1131–1143

    Article  CAS  Google Scholar 

  • Al-Momani IF, Aygun S, Tuncel G (1998) Wet deposition of major ions and trace elements in the eastern Mediterranean basin. J Geophys Res 103:8287–8299

    Article  CAS  Google Scholar 

  • Anil I, Karaca F, Alagha O (2009) Investigation of long-range atmospheric transport effects on Istanbul: inhalable particulate matter episodes. Ekoloji 19:86–97

    Article  Google Scholar 

  • Anıl I, Golcuk K, Karaca F (2014) ATR-FTIR spectroscopic study of functional groups in aerosols: the contribution of a saharan dust transport to urban atmosphere in Istanbul, Turkey. Water Air Soil Pollut 225:1–14 1898

    Google Scholar 

  • Baez PA, Belmont DR, Padilla GH (1993) Variation of chemical composition of wet precipitation, using sequential sampling: urban-rural areas comparison. Atmosfera 6:163–174

    Google Scholar 

  • Başak B, Alagha O (2004) The chemical composition of rainwater over Büyükçekmece Lake, Istanbul. Atmos Res 71:275–288

    Article  Google Scholar 

  • Basak B, Alagha O (2010) Trace metals solubility in rainwater: evaluation of rainwater quality at a watershed area, Istanbul. Environ Monit Assess 167:493–503

    Article  CAS  Google Scholar 

  • Bertrand G, Celle-Jeanton H, Laj P, Rangognio J, Chazot G (2009) Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). J Atmos Chem 60:253–271

    Article  Google Scholar 

  • Celle-Jeanton H, Travi Y, Loÿe-Pilot M-D, Huneau F, Bertrand G (2009) Rainwater chemistry at a Mediterranean inland station (Avignon, France): local contribution versus long-range supply. Atmos Res 91:118–126

    Article  CAS  Google Scholar 

  • Chen L, Duce RA (1983) The sources of sulfate, vanadium, and mineral matter in aerosol particles over Bermuda. Atmos Environ 17:2055–2064

    Article  CAS  Google Scholar 

  • Doğan G, Güllü G, Tuncel G (2008) Sources and source regions effecting the aerosol composition of the eastern Mediterranean. Microchem J 88:142–149

    Article  Google Scholar 

  • Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • EMEP (2011a) EMEP status report 2/2011. Norwegian Institute for Air Research, Kjeller, Norway

    Google Scholar 

  • EMEP (2011b) Transboundary acidification, eutrophication, and ground level ozone in Europe in 2009. Norwegian Meteorological Institute, Norway

    Google Scholar 

  • Güllü G, Doğan G, Tuncel G (2005) Atmospheric trace element and major ion concentrations over the eastern Mediterranean Sea: identification of anthropogenic source regions. Atmos Environ 39:6376–6387

    Article  Google Scholar 

  • Imtiaz M et al (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    Article  CAS  Google Scholar 

  • Jaffrezo JL, Colin JL (1987) Construction and exploitation of an automatic sequential wet-only rain sampler. Environ Technol Lett 8:467–474

    Article  CAS  Google Scholar 

  • Karaca F, Camci F (2010) Distant source contributions to PM10 profile evaluated by SOM based cluster analysis of air mass trajectory sets. Atmos Environ 44:892–899

    Article  CAS  Google Scholar 

  • Karaca F, Alagha O, Ertürk F, Yılmaz YZ, Özkara T (2008) Seasonal variation of source contributions to atmospheric fine and coarse particles at suburban area in Istanbul, Turkey. Environ Eng Sci 25:767–782

    Article  CAS  Google Scholar 

  • Karaca F, Anil I, Alagha O (2009) Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity. Atmos Environ 43:5713–5722

    Article  CAS  Google Scholar 

  • Kaya G, Tuncel G (1997) Trace element and major ion composition of wet and dry depositon in Ankara, Turkey. Atmos Environ 31:3985–3998

    Article  CAS  Google Scholar 

  • Keene WC, Pszenny AAP, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658

    Article  CAS  Google Scholar 

  • Kindap T, Unal A, Chen SH, Hu Y, Odman MT, Karaca M (2006) Long-range aerosol transport from Europe to Istanbul, Turkey. Atmos Environ 40:3536–3547

    Article  CAS  Google Scholar 

  • Koçak M, Kubilay N, Mihalopoulos N (2004) Ionic composition of lower tropospheric aerosols at a northeastern Mediterranean site: implications regarding sources and long-range transport. Atmos Environ 38:2067–2077

    Article  Google Scholar 

  • Koulousaris M, Aloupi M, Angelidis MO (2009) Total metal concentrations in atmospheric precipitation from the northern Aegean Sea. Water Air Soil Pollut 201:389–403

    Article  CAS  Google Scholar 

  • Kubilay N, Saydam AC (1995) Trace elements in atmospheric particulates over the eastern Mediterranean; concentrations, sources, and temporal variability. Atmos Environ 29:2289–2300

    Article  CAS  Google Scholar 

  • Kuzu SL, Saral A (2017) The effect of meteorological conditions on aerosol size distribution in Istanbul. Air Qual Atmos Health. https://doi.org/10.1007/s11869-017-0491-y

  • Mendez J, Guieu C, Adkins J (2010) Atmospheric input of manganese and iron to the ocean: seawater dissolution experiments with Saharan and north American dusts. Mar Chem 120:34–43

    Article  CAS  Google Scholar 

  • Möller D (1990) The NaCl ratio in rainwater and the seasalt chloride cycle. Tellus 42:254–262

    Article  Google Scholar 

  • Muezzinoglu A, Cizmecioglu SC (2006) Deposition of heavy metals in a Mediterranean climate area. Atmos Res 81:1–16

    Article  CAS  Google Scholar 

  • Özsoy T, Örnektekin S (2009) Trace elements in urban and suburban rainfall, Mersin, northeastern Mediterranean. Atmos Res 94:203–219

    Article  Google Scholar 

  • Pekey B, Karakas D, Ayberk S (2007) Atmospheric deposition of polycyclic aromatic hydrocarbons to Izmit Bay, Turkey. Chemosphere 67:537–547

    Article  CAS  Google Scholar 

  • Pryor SC, Spaulding AM, Rauwolf H (2006) Evolution of the concentration of inorganic ions during the initial stages of precipitation events. Water Air Soil Pollut 180:3–10

    Article  Google Scholar 

  • Reizer M, Juda-Rezler K (2016) Explaining the high PM10 concentrations observed in polish urban areas. Air Qual Atmos Health 9:517–531

    Article  CAS  Google Scholar 

  • Salvador P, Artinano B, Querol X, Alastuey A (2008) A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study. Sci Total Environ 390:495–506

    Article  CAS  Google Scholar 

  • Sandroni V (2003) Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis. Talanta 60:715–723

    Article  CAS  Google Scholar 

  • Şaylan L, Çaldağ B, Bakanoğulları F, Toros H, Yazgan M, Şen O, Özkoca Y (2011) Spatial variation of the precipitation chemistry in the Thrace region of Turkey. CLEAN - Soil, Air, Water 39:491–501

    Article  Google Scholar 

  • Scheuvens D, Schütz L, Kandler K, Ebert M, Weinbruch S (2009) Composition of Saharan dust and its possible source regions – a review. European Aerosol Conference 2009, Karlsruhe, Abstract T052A17

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077.

  • Terrouche A, Ali-Khodja H, Kemmouche A, Bouziane M, Derradji A, Charron A (2015) Identification of sources of atmospheric particulate matter and trace metals in Constantine, Algeria. Air Qual Atmos Health 9:69–82

    Article  Google Scholar 

  • Türküm A, Pekey B, Pekey H, Tuncel G (2008) Comparison of sources affecting chemical compositions of aerosol and rainwater at different locations in Turkey. Atmos Res 89:306–314

    Article  Google Scholar 

  • Uygur N, Karaca F, Alagha O (2010) Prediction of sources of metal pollution in rainwater in Istanbul, Turkey using factor analysis and long-range transport models. Atmos Res 95:55–64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Anil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anil, I., Alagha, O. & Karaca, F. Effects of transport patterns on chemical composition of sequential rain samples: trajectory clustering and principal component analysis approach. Air Qual Atmos Health 10, 1193–1206 (2017). https://doi.org/10.1007/s11869-017-0504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0504-x

Keywords

Navigation