Skip to main content
Log in

Exposure and dose to particulate matter inside the subway system of Athens, Greece

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Real-time PM10 mass concentrations were monitored inside the trains and in several platforms of red and blue lines in Athens metro system during two measurement campaigns. Furthermore, measurements of PM1, PM2.5, and PM10 concentrations were conducted on a fixed site on a subway platform of blue line (Nomismatokopio) and the majority of particles were in the fine mode. PM10 concentrations were measured inside the metro trains along the entire route of the two metro lines during commuting hours, and the average PM10 concentration was 132.2 ± 34.0 μg/m3 in the red line and 138.0 ± 35.6 μg/m3 in the blue line. Measurements were also conducted in eight platforms and higher concentrations were observed in stations located in the center of Athens, under heavily trafficked streets. An exposure and dose assessment model, ExDoM2, was implemented in order to calculate the deposition, dose, and retention of aerosol particles in the respiratory tract (RT), the gastrointestinal (GI) tract, and their absorption to blood. The model was applied to study the human dose of three different subjects, a person with sedentary employment commuting by metro 1 h per day, a metro worker with sedentary activity, and a metro worker with light exercise activity. The dose varies in the different regions of the RT with the highest dose in the extrathoracic region. The dose in the RT after commuting by metro for 1 h was 125.4 μg that corresponds to 36.3% of the total personal daily dose (worst-case scenario, no indoor sources).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aarnio P, Yli-Tuomi T, Kousa A, Mäkelä T, Hirsikko A, Hämeri K, Räisänenf M, Hillamoc R, Koskentalob T, Jantunen M (2005) The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos Environ 39:5059–5066. doi:10.1016/j.atmosenv.2005.05.012

    Article  CAS  Google Scholar 

  • Adams H, Nieuwenhuijsen M, Colvile R, McMullen M, Khandelwal P (2001) Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci Total Environ 279:29–44. doi:10.1016/S0048-9697(01)00723-9

    Article  CAS  Google Scholar 

  • Aleksandropoulou V, Lazaridis M (2013) Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions. Air Qual Atmos Health 6:13–26. doi:10.1007/s11869-010-0126-z

    Article  CAS  Google Scholar 

  • Aleksandropoulou V, Lazaridis M (2016) Trends in population exposure to particulate matter in urban areas of Greece during the last decade. Sci Total Environ 581–58:399–412, ISSN 0048-9697. doi:10.1016/j.scitotenv.2016.12.148

    Google Scholar 

  • Attiko metro (2017) http://www.ametro.gr. Accessed 15 January 2017

  • Barmparesos N, Assimakopoulos V, Assimakopoulos M, Tsairidi E (2016) Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro. AIMS Environ Sci 3(2):199–219. doi:10.3934/environsci.2016.2.199

    Article  CAS  Google Scholar 

  • Brunekreef B, Forsberg B (2005) Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J 26:309–318. doi:10.1183/09031936.05.00001805

    Article  CAS  Google Scholar 

  • Cartenì A, Cascetta F, Campana S (2015) Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos Environ 101:328–337. doi:10.1016/j.atmosenv.2014.11.030

    Article  Google Scholar 

  • Chalvatzaki E, Lazaridis M (2015) Development and application of a dosimetry model (ExDoM2) for calculating internal dose of specific particle-bound metals in the human body. Inhal Toxicol 27:308–320. doi:10.3109/08958378.2015.1046201

    Article  CAS  Google Scholar 

  • Cheng Y, Liu Z, Yan J (2012) Comparisons of PM10, PM2.5, particle number, and CO2 levels inside metro trains travelling in underground tunnels and on elevated tracks. Aerosol Air Qual. Research 12:879–891. doi:10.4209/aaqr.2012.05.0127

    CAS  Google Scholar 

  • Chillrud S, Epstein D, Ross J, Sax S, Pederson D, Spengler J, Kinney P (2004) Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system. Environ Sci Technol 38:732–737. doi:10.1021/es034734y

    Article  CAS  Google Scholar 

  • Chillrud S, Grass M, Ross M, Coulibaly D, Slavkovich M, Epstein M, Sax S, Pederson D, Johnson D, Spengler J, Kinney P (2005) Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers. J Urban Health 82:33–42. doi:10.1093/jurban/jti006

    Article  Google Scholar 

  • Cusack M, Talbot N, Ondráček J, Minguillón M, Martins V, Klouda K, Scwarz J, Ždímal V (2015) Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos Environ 118:176–183. doi:10.1016/j.atmosenv.2015.08.013 doi:10.1080/02786820500191348

    Article  CAS  Google Scholar 

  • Davidson C, Phalen R, Solomon P (2005) Airborne particulate matter and human health: a review. Aerosol Sci Technol 39:737–749. doi:10.1080/02786820500191348

    Article  CAS  Google Scholar 

  • Eleftheriadis K, Ochsenkuhn KM, Lymperopoulou T, Karanasiou A, Razos P, Oschsenkuhn-Petropoulou M (2014) Influence of local and regional sources on the observed spatial and temporal variability of size resolved atmospheric aerosol mass concentrations and water-soluble species in Athens metropolitan area. Atmos Environ 97:252–261. doi:10.1016/j.atmosenv.2014.08.013

    Article  CAS  Google Scholar 

  • Evans J, van Donkelaar A, Martin R, Burnett R, Rainham D, Birkett N, Krewski D (2013) Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 120:33–42. doi:10.1016/j.envres.2012.08.005

    Article  CAS  Google Scholar 

  • Fameli K, Assimakopoulos V (2015) Development of a road transport emission inventory for Greece and the Greater Athens Area: effects of important parameters. Sci Total Environ 505:770–786. doi:10.1016/j.scitotenv.2014.10.015

    Article  CAS  Google Scholar 

  • Gali K, Jiang Y, Yang F, Sun L, Ning Z (2017) Redox characteristics of size-segregated PM from different public transport microenvironments in Hong Kong. Air Qual Atmos Health 39:1–12. doi:10.1007/s11869-017-0473-0

    Google Scholar 

  • Grass D, Ross J, Family F, Barbour J, Simpson H, Coulibaly D, Hernandez J, Chen Y, Slavkovich V, Lib Y, Graziano J, Santellab R, Brandt-Raufb P, Chillrud S (2010) Airborne particulate metals in the New York City subway: a pilot study to assess the potential for health impacts. Environ Res 110:1–11. doi:10.1016/j.envres.2009.10.006

    Article  CAS  Google Scholar 

  • Grivas G, Chaloulakou A, Kassomenos P (2008) An overview of the PM10 pollution problem, in the metropolitan area of Athens, Greece. Assessment of controlling factors and potential impact of long range transport. Sci Total Environ 389:165–177. doi:10.1016/j.scitotenv.2007.08.048

    Article  CAS  Google Scholar 

  • Guo L, Hu Y, Hu Q, Lin J, Li C, Chen J, Li L, Fu H (2014) Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China. Sci Total Environ 496:443–452. doi:10.1016/j.scitotenv.2014.07.055

    Article  CAS  Google Scholar 

  • ICRP (2015) Occupational intakes of radionuclides: part 1 ICRP publication 130. Ann ICRP 44(2)

  • ICRP: International Commission on Radiological Protection (1994a) Human respiratory tract model for radiological protection. ICRP publication 66. Pergamon Press, Oxford

    Google Scholar 

  • Johansson C, Johansson A (2003) Particulate matter in the underground of Stockholm. Atmos Environ 37:3–9. doi:10.1016/S1352-2310(02)00833-6

    Article  CAS  Google Scholar 

  • Kam W, Cheung K, Daher N, Sioutas C (2011) Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles metro. Atmos Environ 45:1506–1516. doi:10.1016/j.atmosenv.2010.12.049

    Article  CAS  Google Scholar 

  • Kamani H, Hoseini M, Seyedsalehi M, Mahdavi Y, Jaafari J, Safari G (2014) Concentration and characterization of airborne particles in Tehran’s subway system. Environ Sci Pollut Res 21:7319–7328. doi:10.1007/s11356-014-2659-4

    Article  CAS  Google Scholar 

  • Karanasiou AA, Sitaras IE, Siskos PA, Eleftheriadis K (2007) Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmos Environ 41:2368–2381. doi:10.1016/j.atmosenv.2006.11.006

    Article  CAS  Google Scholar 

  • Karlsson H, Nilsson L, Möller L (2005) Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem Res Toxicol 18:19–23. doi:10.1021/tx049723c

    Article  CAS  Google Scholar 

  • Kim K, Kim Y, Roh Y, Lee C, Kim C (2008) Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul metropolitan subway stations. J Hazard Mater 154:440–443. doi:10.1016/j.jhazmat.2007.10.042

    Article  CAS  Google Scholar 

  • Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F, Puybonnieux-Texier V, Quénel P, Schneider J, Seethaler R, Vergnaud J-C, Sommer H (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356:795–801. doi:10.1016/S0140-6736(00)02653-2

    Article  Google Scholar 

  • Lazaridis M (2011) First principles of meteorology and air pollution. Environ Pollut 19:362 Hardcover ISBN: 978-94-007-0161-8

    Google Scholar 

  • Martins V, Minguillón M, Moreno T, Querol X, de Miguel E, Capdevila M, Centelles S, Lazaridis M (2015a) Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J Aerosol Sci 90:103–113. doi:10.1016/j.jaerosci.2015.08.008

    Article  CAS  Google Scholar 

  • Martins V, Moreno T, Minguillón M, Amato F, de Miguel E, Capdevila M, Querol X (2015b) Exposure to airborne particulate matter in the subway system. Sci Total Environ 511:711–722. doi:10.1016/j.scitotenv.2014.12.013

    Article  CAS  Google Scholar 

  • Martins V, Moreno T, Minguillón M, van Drooge B, Amato F, de Miguel E, Capdevila M, Centelles S, Querol X (2016a) Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. Environ Pollut 208:125–136. doi:10.1016/j.envpol.2015.07.004

    Article  CAS  Google Scholar 

  • Martins V, Moreno T, Mendes L, Eleftheriadis K, Diapouli E, Alves C, Duarte M, Miguel E, Capdevila M, Querol X, Minguillón M (2016b) Factors controlling air quality in different European subway systems. Environ Res 146:35–46. doi:10.1016/j.envres.2015.12.007

    Article  CAS  Google Scholar 

  • Morawska L, Salthammer T (2003) Indoor environment: airborne particles and settled dust. WILEY VCH, Weinheim

    Book  Google Scholar 

  • Moreno T, Martins V, Querol X, Jones T, BéruBé K, Minguillón MC, Amato F, Capdevila M, Miguel E, Centelles S, Gibbons W (2015) A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci Total Environ 505:367–375

    Article  CAS  Google Scholar 

  • Moreno T, Kelly F, Dunster C, Oliete A, Martins V, Reche C, Minguillón M, Amato F, Capdevila M, Miguel E, Querol X (2017) Oxidative potential of subway PM2.5. Atmos Environ 148:230–238. doi:10.1016/j.atmosenv.2016.10.045

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen M, Gómez-Perales J, Colvile R (2007) Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos Environ 41:7995–8006. doi:10.1016/j.atmosenv.2007.08.002

    Article  CAS  Google Scholar 

  • Park D, Ha K (2008) Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea. Environ Int 34:629–634. doi:10.1016/j.envint.2007.12.007

    Article  CAS  Google Scholar 

  • Perrino C, Marcovecchio F, Tofful L, Canepari S (2015) Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ Sci Pollut Res Int 22:9204–9214. doi:10.1007/s11356-014-4019-9

    Article  CAS  Google Scholar 

  • Pope C 3rd (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 4:713723. doi:10.2307/3454408

    Google Scholar 

  • Ramos C, Wolterbeek H, Almeida S (2016) Air pollutant exposure and inhaled dose during urban commuting: a comparison between cycling and motorized modes. Air Qual Atmos Health. doi:10.1007/s11869-015-0389-5

  • Salma I, Weidinger T, Maenhaut W (2007) Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos Environ 41:8391–8405. doi:10.1016/j.atmosenv.2007.06.017

    Article  CAS  Google Scholar 

  • Sánchez-Soberón F, Mari M, Kumar V, Rovira J, Nadal M, Schuhmacher M (2015) An approach to assess the particulate matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract. Environ Res 143:10–18. doi:10.1016/j.envres.2015.09.008

    Article  Google Scholar 

  • STASY (2017) http://www.stasy.gr/index.php?id=342&L=title%3D%CE%9E%C2%95%CE%9E%CE%89%CE%9F%C2%83%CE. Accessed 05 May 2017

  • U.S. EPA (2011) Exposure factors handbook 2011 edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011. http://www.epa.gov/ncea/efh. Accessed 15 January 2017.

  • Wang X, Gao H (2011) Exposure to fine particle mass and number concentrations in urban transportation environments of New York City. Transport Res D-Tr E 16:384–391. doi:10.1016/j.trd.2011.03.001

    Article  Google Scholar 

  • Woodrow P, LangstaffIan J, Kingham L (2016) Use of an exposure model to explore the impact of residential proximity to a highway on exposures to air pollutants of an ambient origin. Air Qual Atmos Health 9:335–357. doi:10.1007/s11869-015-0343-6

    Article  Google Scholar 

  • Ypeka (2006) National Reporting to the Fourteenth & Fifteenth Sessions of the Commission for sustainable development of the United Nations (UNCSD 14 – UNCSD 15), Greece. Hellenic Ministry of Environment and Energy http://www.ypeka.gr/LinkClick.aspx?fileticket=UFZ9SMfr7wQ=&tabid 552. Accessed 15 January 2017

  • YPEKA (2015) Air pollution annual report 2015. Hellenic Ministry of Environment and Energy. http://www.ypeka.gr/LinkClick.aspx?fileticket=81Y3zyY9w%2BU%3D&tabid=490&language=el-GR. Accessed 15 January 2017

Download references

Acknowledgements

The present study was funded by the European Union 7th framework program HEXACOMM FP7/2007–2013 under grant agreement no. 315760. The authors would like to thank STASY—Urban Rail Transport S.A.—who gave us permission to conduct the sampling campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Mammi-Galani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammi-Galani, E., Eleftheriadis, K., Mendes, L. et al. Exposure and dose to particulate matter inside the subway system of Athens, Greece. Air Qual Atmos Health 10, 1015–1028 (2017). https://doi.org/10.1007/s11869-017-0490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0490-z

Keywords

Navigation