Skip to main content
Log in

Carbonyls in the urban atmosphere of Monterrey, Mexico: sources, exposure, and health risk

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Characteristics and sources of carbonyls in the ambient urban atmosphere of Monterrey, Mexico, were studied from April 10, 2012 to March 12, 2013. A total of 184 samples were collected using silica-gel cartridges impregnated with DNPH during morning (08:00–12:00 h) and afternoon (15:00–19:00 h) sampling periods. Samples were analyzed using high-performance liquid chromatography with an UV detector. Acetaldehyde was the most abundant carbonyl with mean concentrations of 13.08, 21.26, 12.19, and 11.78 μg m−3 for spring, summer, autumn, and winter, respectively. Corresponding seasonal concentrations of formaldehyde were 7.11, 10.42, 5.93, and 8.48 μg m−3. Both carbonyls showed a clear seasonal pattern and exhibited significantly higher levels in summer. Formaldehyde showed higher concentrations during the morning sampling period for all seasons except autumn, whereas acetaldehyde showed higher levels during the morning sampling period in summer and winter but higher concentrations during the afternoon sampling period in spring and autumn. Meteorological parameters and criteria air pollutants were measured and correlated with measured carbonyls using a principal component analysis. Prevailing winds showed that carbonyl levels were influenced by sources located to the SSE (during spring and summer), which include industrial, vehicular, and area sources. During autumn and winter, prevailing winds were from the NNE. Health risk assessment results show that values for the integrated lifetime cancer risk and non-cancer risk exceed acceptable risk levels and that long-term exposure to both carbonyls may result in a significant risk of cancer and adverse health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Air Resources Laboratory (ARL) (2015). HYSPLIT: Hybrid Single-Particle Lagrangian Integrated Trajectory. http://www.arl.noaa.gov/HYSPLIT_info.php

  • Alves CA, Eutyugina M, Cerqueira M, Nunes T, Duarte M, Vicente E (2015) Volatile organic compounds emitted by the stacks of restaurants. Air Qual Atmos Health 8(4):401–412. doi:10.1007/s11869-014-0310-7

    Article  CAS  Google Scholar 

  • Arriaga JL, West J, Sosa G, Escalona SS, Orduñez RM, Cervantes ADM (2004) Measurements of VOCs in Mexico City (1992-2001) and evaluation of VOCs and CO in the emissions inventory. Atmos Environ 38:2523–2533. doi:10.1016/j.atmosenv.2004.01.033

    Article  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2102. doi:10.1016/s1352-2310(99)00460-4

    Article  CAS  Google Scholar 

  • Atkinson R, Lloyd AC (1984) Evaluation of kinetic and mechanistic data for modeling of photochemical smog. J Phys Chem Ref Data 13:315–444

    Article  CAS  Google Scholar 

  • Baez AP, Padilla H, Cervantes PD, Torres MC, García R, Belmont R (2001) Preliminary study of the determination of ambiente carbonyls in Xalapa City, Veracruz, Mexico. Atmos Environ 35:1813–1819. doi:10.1016/S1352-2310(00)00475-1

    Article  CAS  Google Scholar 

  • Baez AP, Torres MC, García R, Padilla HG (2002) Carbonyls in the metropolitan area of Mexico City: calculation of total photolytic rate constants kp (s-1) and photolytic lifetime (t) of ambient formaldehyde and acetaldehyde. Environ Sci Pollut Res 9(4):230–233. doi:10.1007/BF02987496

    Article  CAS  Google Scholar 

  • Baldauf R, Watkins N, Heist D, Bailey C, Rowley P, Shores K (2009) Near-road air quality monitoring: factors affecting network design and interpretation of data. Air Qual Atmos Health 2:1–9. doi:10.1007/s11869-009-0028-0

    Article  CAS  Google Scholar 

  • Ceron Breton JB, Padilla H, Belmont R, Torres MC, Moya M, Baez AP (2005) Measurements of C1-C4 carbonyls at forested regions in Mexico. Atmosfera 18(2):103–125

    Google Scholar 

  • Ceron RM, Ceron JG, Muriel M (2007) Diurnal and seasonal trends in carbonyl levels in a semi-urban coastal site in the Gulf of Campeche, Mexico. Atmos Environ 41:63–71. doi:10.1016/j.atmosenv.2006.08.008

    Article  CAS  Google Scholar 

  • Chameides WL, Fehsenfeld F, Rodgers MC, Cardellino C, Martínez J, Parrish D, Lonneman W, Lawson DR, Rasmussen RA, Zimmerman P, Greenberg J, Middleton P, Wang T (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res 97:6037–6056. doi:10.1029/91JD03014

    Article  CAS  Google Scholar 

  • Felipe-Sotelo M, Gustems L, Hernandez L (2006) Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (north-East Spain) during the period 2000-2004 using multivariate data analysis methods. Atmos Environ 40(38):7421–7436. doi:10.1016/j.atmosenv.2006.07.013

    Article  CAS  Google Scholar 

  • Geng F, Cai C, Tie X, Yu Q, An J, Peng L, Zhou G, Xu J (2009) Analysis of VOC emissions using PCA/APCS receptor model at city Shanghai, China. J Atmos Chem 62:229–247. doi:10.1007/s10874-010-9150-5

    Article  Google Scholar 

  • Graedel TE (1978) Chemical compounds in the atmosphere. In: Carbonyl compounds. Academic Press, New York, pp. 158–209

    Google Scholar 

  • Graedel TE, Weschler CJ (1981) Chemistry within aqueous atmospheric aerosols and raindrops. Rev Geophys Space Phys 19:505–539. doi:10.1029/RG019i004p00505

    Article  CAS  Google Scholar 

  • Grosjean D, Williams EL (1993) Ambient levels of formaldehyde and acetaldehyde in Atlanta, Georgia. J Air Waste Manag Assoc 43:469–474

    Article  CAS  Google Scholar 

  • Guo H, Lee SC, Louie PKK, Ho KF (2004) Characterization of hydrocarbons and carbonyls in the atmosphere of Hong Kong. Chemosphere 57:1363–1372. doi:10.1016/j.chemosphere.2004.07.055

    Article  CAS  Google Scholar 

  • Guo S, Chen M, Tan J (2016) Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China. Atmos Res 169:46–53. doi:10.1016/j.atmosres.2015.09.006

    Article  CAS  Google Scholar 

  • Haagen-Smit AJ, Fox MM (1956) Ozone formation in photochemical oxidation of organic substance. Indust Eng Chem 48:1484–1487. doi:10.1021/ie51400a033

    Article  CAS  Google Scholar 

  • Hellin H, Hakola H, Pirjola L, Laurila T, Pystinen KH (2006) Ambient air concentrations, source profiles and source apportionment of 71 different C2-C10 volatile organic compounds in urban and residential areas of Finland. Environ Sci Technol 40:103–108. doi:10.1021/es051659d

    Article  Google Scholar 

  • Ho KF, Lee SC, Louie PKK, Zou SC (2002) Seasonal variation of carbonyl compound concentrations in urban are of Hong Kong. Atmos Environ 36:1259–1265. doi:10.1016/S1352-2310(01)00475-7

    Article  CAS  Google Scholar 

  • Statisticts Package for Microsoft Excell. (XLSTAT). http://www.xlstat.com/es

  • IARC (International Agency for Research on Cancer) (1985) Evaluation of carcinogenic risk of acetaldehyde. IARC Monographs 36:101–132

    Google Scholar 

  • IARC (International Agency for Research on Cancer) (1995) Evaluation of carcinogenic risk of chemicals to humans. In: Vol. 62: Wood dust and formaldehyde. World Health Organization, Lyon, France

    Google Scholar 

  • Jacob DJ, Wofsy SC (1988) Photochemistry of biogenic emissions over the Amazon forest. J Geophys Res 93:1477–1486. doi:10.1029/JD093iD02p01477

    Article  CAS  Google Scholar 

  • Loyd AC, Atkinson R, Lurmann FW, Nitta B (1983) Modeling potential ozone impacts from natural hydrocarbons—I. Development and testing of a chemical mechanism for the NOx-air photooxidations of isoprene and α pinene under ambient conditions. Atmos Environ 17:1931–1950. doi:10.1016/0004-6981(83)90351-7

    Article  Google Scholar 

  • Menchaca-Torre HL, Mercado-Hernández R, Rodríguez-Rodríguez J, Mendoza-Domínguez A (2015) Diuranl and seasonal variations of carbonyls and their effect on ozone concentrations in the atmosphere of Monterrey, Mexico. J Air Waste Manag Assoc 65(4):500–510. doi:10.1080/10962247.2015.1005849

    Article  CAS  Google Scholar 

  • Moortgat GK, Seiler W, Warneck P (1983) Photodissociation of HCHO in air: CO and H2 quantum yields at 220 and 300 K. J Chem Phys 78:1185–1190

    Article  CAS  Google Scholar 

  • National Institute of Statistics, Geography and Informatics (INEGI), 2011. Environmental statistics for the metropolitan area of Monterrey. México.

    Google Scholar 

  • National Oceanic and Atmospheric Administration, USA (NOAA), 2015. Wind rose. Air Resources Laboratory. http://ready.arl.noaa.gov/READYYamet.php

  • Neri F (2012) A comparative study of a financial agent based simulator across learning scenarios, agents and data mining interaction. Lecture notes in computer science, vol 7103. Springer, Berlin, pp. 86–97

    Google Scholar 

  • Pang X, Mu Y (2006) Seasonal nd diurnal variations of carbonyl compounds in Beijing ambient air. Atmos Environ 40:6313–6320. doi:10.1016/j.atmosenv.2006.05.044

    Article  CAS  Google Scholar 

  • SEMARNAT. INE. Secretaría de Medio Ambiente y Recursos Naturales (2008). Programa De Gestión Para Mejorar La Calidad Del Aire Del Área Metropolitana De Monterrey 2008–2012. México.

    Google Scholar 

  • Shepson PB, Hastie DR, Schiff HI, Polizzi M (1991) Atmospheric concentrations and temporal variation of C1–C3 carbonyl compounds at two rural sites in central Ontario. Atmos Environ 25(9):2001–2015. doi:10.1016/0960-1686(91)90280-K

    Article  Google Scholar 

  • Singh HB, Salas LJ (1986) Measurements of formaldehyde and acetaldehyde in the urban air. Atmos Environ 20:1301–1304. doi:10.1016/0004-6981(86)90165-4

    Article  Google Scholar 

  • US Department of Health and Human Services (DHHS). 1999. Public Health Service Agency for Toxic Substances and Disease Registry, Toxicological Profiles for Formaldehyde and Acetaldehyde, July, 1999

  • US Environmental Protection Agency (EPA). 1982. Atmospheric chemistry of several toxic compounds. Research Triangle Park, NC: U.S. Research Laboratory, Office of Research and Development, PB83-146340 EPA-600/3-82-092.

  • US Environmental Protection Agency (EPA). 1987. Integrated Risk Information System (IRIS). Quantitative estimate of carcinogenic risk from inhalation exposure to acetaldehyde. Chemical Assessment Summary. pp. 12-14, Available at http://www.cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr = 290 (last access: December 2, 2015), Washington, D.C., USA

  • US Environmental Protection Agency (EPA) (1997) Air risk assessment workplan. Regions 3, 4 and 5. Ohio Environmental Protection Agency, Division of Air Pollution Control, Kentucky, Ohio, USA

    Google Scholar 

  • US Environmental Protection Agency (EPA). 1998. Integrated Risk Information System (IRIS). Carcinogenic effects of formaldehyde and acetaldehyde. Available at: http://www.epa.gov/iris (last access: December 2, 2015).

  • US Environmental Protection Agency (EPA). 1999. Method TO-11 A. Determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography (HPLC). Active sampling methodology. Research Triangle Park, NC, USA.

  • US Environmental Protection Agency (EPA). 2009. Risk assessmnet guidance for superfund volume I: human health evaluation manual (part F, supplemental guidance for inhalation risk assessment): Final [EPA Report] (EPA/540/-R-070/002)

  • US Environmental Protection Agency (EPA). National Center for Environmental Assessment. 1990. Integrated Risk Information System (IRIS). Quantitative estimate of carcinogenic risk from inhalation exposure to formaldehyde. Chemical Assesment summary. pp. 10-14, Available at http://www.cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr = 419 (last access: December 2, 2015). Washington, D.C., USA

  • Venkanna R, Nikhil GN, Sinha PR, Rao TS, Swamy YV (2015). Significance of volatile organic compounds and oxides of nitrogen on surface ozone formation at semi-arid tropical urban site, Hyderabad, India. Air Quality, Atmosphere and Health, Published on line: 06 May 2015: 1–12. doi:10.1007/s11869-015-0347-2

  • Viskari EL, Vartiainien M, Pasanen P (2000) Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along highway in Eastern Finland. Atmos Environ 34:917–923. doi:10.1016/S1352-2310(99)00307-6

    Article  CAS  Google Scholar 

  • Wang ZH, Zhang SY, Lu SH, Bai YH (2003) Screenings of 23 plant species in Beijing for volatile organic compound emissions. Chin J Environ Sci 2:7–12

    Google Scholar 

  • Weng M, Zhu L, Yang K, Chen S (2009) Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. J Hazard Mater 164:700–706. doi:10.1016/j.jhazmat.2008.08.094

    Article  CAS  Google Scholar 

  • Zhang Y, Mu Y, Liang P, Xu Z, Liu J, Zhang H, Mellouki A (2012) Atmospheric BTEX and carbonyls during summer seasons of 2008-2010 in Beijing. Atmos Environ 59:186–191. doi:10.1016/j.atmosenv.2012.06.030

    Article  Google Scholar 

  • Zhang Z, Wang X, Zhang Y, Lu S, Huang Z, Huang X, Wang Y (2015). Ambient air benzene at background sites in China's most developed coastal regions: Exposure levels, source implications and health risks. Science of the Total Environment 511: 792-800. doi: 10.1016/j.scitotenv.2015.01.003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Cerón-Bretón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerón-Bretón, J.G., Cerón-Bretón, R.M., Kahl, J.D.W. et al. Carbonyls in the urban atmosphere of Monterrey, Mexico: sources, exposure, and health risk. Air Qual Atmos Health 10, 53–67 (2017). https://doi.org/10.1007/s11869-016-0408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-016-0408-1

Keywords

Navigation