Skip to main content

Advertisement

Log in

Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The fine particulate matter samples for 24 h were carried out at the Environment Monitoring Station (EMS) and Shandong Jianzhu University (SJU) sites during 2010 in Jinan City, China. Eight water-soluble ion species were analyzed by ion chromatography, while organic carbon (OC) and elemental carbon (EC) were determined with the IMPROVE thermal optical reflectance method, and 20 inorganic elements were measured by inductively coupled plasma-atomic emission spectrometer and inductively coupled plasma-mass spectroscopy. The annual average mass concentration of PM2.5 was 168.85 μg m−3 at EMS and 148.67 μg m−3 at SJU. The coefficient of divergence was 0.14, 0.19, 0.23, and 0.23 in spring, summer, fall, and winter, respectively, indicating that there was no obvious spatial difference at the two sampling sites. The highest PM2.5, OC, and OC/EC ratio were in winter because of the enhanced emissions from coal combustion for heating and poor atmospheric dispersion. By the method of enrichment factors, the 20 inorganic elements were divided into three types owing to their sources. Al, Si, and Ti were mainly contributed by crustal sources. Na, Mg, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Ba, and Sr were from both natural emissions and anthropogenic sources. Cu, Zn, Pb, and Sn mainly originated from anthropogenic sources such as vehicular exhaust and industrial emission. Chemical mass closure calculation estimated that SO4 2− was the largest contributor and explained 29.66 % of PM2.5 mass at EMS, while 31.64 % was at SJU. The organic matter, crustal matter, and NO3 , respectively, accounted for 15.12, 12.87, and 13.77 % to PM2.5 at EMS, while it accounted for 13.46, 13.96, and 14.93 % at SJU, respectively. By the positive matrix factorization analysis, the coal combustion and biomass burning, secondary sulfate, soil dust, secondary nitrate, and vehicle emissions were identified as the major emission sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldwin AT, Schmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J Chem Ecol 20(8):2139–2157

    Article  CAS  Google Scholar 

  • Cao JJ, Lee SC, Ho KF, Zou SC, Fung K, Li Y, Watson JG, Chow JC (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ 38(27):4447–4456

    Article  CAS  Google Scholar 

  • Cao JJ, Wu F, Chow JC, Lee SC, Li Y, Chen SW, An ZS, Fung KK, Watson JG, Zhu CS, Liu SX (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos Chem Phys 5:3127–3137

    Article  CAS  Google Scholar 

  • Cao JJ, Lee SC, Chow JC, Watson JG, Ho KF, Zhang RJ, Jin ZD, Shen ZX, Chen GC, Kang YM, Zou LZ, Zhang LZ, Qi Sh, Dai MH, Cheng Y, Hu K (2007) Spatial and seasonal distributions of carbonaceous aerosols over China. J Geophys Res 112 (D22), doi:10.1029/2006JD008205.

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33(17):2771–2781

    Article  CAS  Google Scholar 

  • Chan YC, Simpson RW, Mctainsh GH, Vowle PD (1997) Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmos Environ 31(22):2061–2080

    Article  Google Scholar 

  • Cheng YF, Berghof M, Garland RM, Wiedensohler A, Wehner B, Müller T, Su H, Zhang YH, Achter P, Nowak A, Pöschl U, Zhu T, Hu M, Meng LM (2009) Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass 15 aging at a polluted regional site in northeastern China. J Geophys Res 114(D2):D00G10, doi:10.1029/2008JD010883

  • Chio C, Cheng M, Wang C (2004) Source apportionment to PM in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmos Environ 38(39):6893–6905

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Lu ZQ, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ 30(12):2079–2112

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol 34(1):23–34

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmüller H (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38(16):4414–4422

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Louie PK, Chen LW, Sin D (2005) Comparison of PM2.5 carbon measurement methods in Hong Kong, China. Environ Pollut 137(2):334–344

    Article  CAS  Google Scholar 

  • Christoforou CS, Salmon LG, Hannigan MP, Solomon PA, Cass GR (2000) Trends in fine particle concentration and chemical composition in southern California. J Air Waste Manag Assoc 50(1):43–53

    Article  CAS  Google Scholar 

  • Dan M, Zhuang GS, Li XX (2004) The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmos Environ 38(21):3443–3452

    Article  CAS  Google Scholar 

  • Dockery DW, Stone PH (2007) Cardiovascular risks from fine particulate air pollution. N Engl J Med 356:511–513

    Article  CAS  Google Scholar 

  • Duan JC, Tan JH, Cheng DX, Bi XH, Deng WJ, Sheng GY, Fu JM, Wong MH (2007) Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China. Atmos Environ 41(14):2895–2903

    Article  CAS  Google Scholar 

  • Duan J, Tan J (2013) Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmos Environ 74:93–101

    Article  CAS  Google Scholar 

  • Gao J, Wang J, Cheng SH, Xue LK, Hz Y, Hou LJ, Jiang YQ, Wang WX (2007) Number concentration and size distribution of submicron particles in Jinan urban area: characteristics in summer and winter. J Environ Sci 19(12):1466–1473

    Article  CAS  Google Scholar 

  • Gu JX, Bai ZP, Li AX, Wu LP, Xie YY, Lei WF, Dong HY, Zhag X (2011) Chemical composition of PM2.5 during winter in Tianjin, China. Particuology 9(3):215–221

    Article  CAS  Google Scholar 

  • Guo S, Hu M, Wang ZB, Wang ZB, Slanina J, Zhao YL (2010) Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional f secondary ormation. Atmos Chem Phys 10:947–959

    Article  CAS  Google Scholar 

  • Harrison RM (2004) Key pollutants—airborne particles. Sci Total Environ 334–335:3–8

    Article  Google Scholar 

  • He KB, Yang FM, Ma YL, Ma YL, Zhang Q, Yao XH, Chan CK, Cadle S, Chan T, Mulawa P (2001) The characteristics of PM2.5 in Beijing, China. Atmos Environ 35(29):4959–4970

    Article  CAS  Google Scholar 

  • Huang XF, He LY, Hu M, Zhang YH (2006) Annual variation of particulate organic compounds in PM2.5 in the urban atmosphere of Beijing. Atmos Environ 40(14):2449–2458

    Article  CAS  Google Scholar 

  • Ianniello A, Spataro F, Esposito G, Allegrini I, Hu M, Zhu T (2011) Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China). Atmos Chem Phys 11:10803–10822

    Article  CAS  Google Scholar 

  • Kim HS, Huh JB, Hopke PK, Holsen TM, Yi SM (2007) Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos Environ 41(32):6762–6770

    Article  CAS  Google Scholar 

  • Kong SF, Lu B, Bai ZP, Zhao XY, Han B, Li ZY, Ji YQ, XuYH LY, Jiang H (2011) Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city. Atmos Environ 45(25):4192–4204

    Article  CAS  Google Scholar 

  • Lee E, Chan CK, Paatero P (1999) Application of Positive matrix factorization in source apportionment of particle pollutants in HongKong. Atmos Environ 33:3201–3212

    Article  CAS  Google Scholar 

  • Li XR, Wang LL, Wang YS, Wen TX, Yang YJ, Zhao YN, Wang YF (2012) Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmos Environ 50:278–286

    Article  CAS  Google Scholar 

  • Liu W, Wang Y, Russell A, Edgerton LES (2005) Atmospheric aerosol over two urban–rural pairs in the southeastern United States: chemical composition and possible sources. Atmos Environ 39:4453–4470

    Article  CAS  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo YF (2002) Climate effects of black carbon aerosols in China and India. Science 297(5590):2250–2253

    Article  CAS  Google Scholar 

  • Norris G, YoungPong SN, Koenig JQ, Lrson TV, Sheppard L, Stout JW (1999) An association between fine particles and asthma emergency department visits for children in Seattle. Environ Health Perspect 107(6):489–493

    Article  CAS  Google Scholar 

  • Ostro B, Broadwin R, Green S, Feng WY, Lipsett M (2006) Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environ Health Perspect 114(1):29–33

    Article  Google Scholar 

  • Park SS, Kim YJ (2004) PM2.5 particles and size-segregated ionic species measured during fall season in three urban sites in Korea. Atmos Environ 38(10):1459–1471

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Paatero, P (2004) User’s guide for positive matrix factorization programs PMF2 and PMF3, part 1: tutorial.

  • Raman RS, Hopke PK (2007) Source apportionment of fine particles utilizing partially speciated carbonaceous aerosol data at two rural locations in New York state. Atmos Environ 41:7923–7939

    Article  Google Scholar 

  • Reiss R, Anderson EL, Cross CE, Hidy DH, Clellan RM, Moolgavkar S (2007) Evidence of health impacts of sulfate- and nitrate-containing particles in ambient air. Inhal Toxicol 19(5):419–449

    Article  CAS  Google Scholar 

  • Schwartz J, Dockery DW, Neas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 46(10):927–939

    Article  CAS  Google Scholar 

  • Song Y, Zhang YH, Xie SD, Zeng LM, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(8):1526–1537

    Article  CAS  Google Scholar 

  • Sun YL, Zhuang GS, Wang Y, Han L, Guo J, Dan M, Zhang WJ, Wang ZF, Hao ZP (2004) The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos Environ 38(35):5991–6004

    Article  CAS  Google Scholar 

  • Sutton MA, Place CJ, Eager M, Fowler D, Smith RI (1995) Assessment of the magnitude of ammonia emissions in the United Kingdom. Atmos Environ 29(12):1393–1411

    Article  CAS  Google Scholar 

  • Tao J, Cao JJ, Zhang RJ, Zhu LH, Zhang T, Shi S, Chan CY (2012) Reconstructed light extinction coefficients using chemical compositions of PM2.5 in winter in urban Guangzhou, China. Adv Atmos Sci 29(2):359–368

    Article  CAS  Google Scholar 

  • Turpin BJ, Huntzicker JJ (1995) Identification of secondary aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29(23):3527–3544

    Article  CAS  Google Scholar 

  • Tsitouridou R, Samara C (1993) First results of acidic and alkaline constituents determination in air particulates of Thessaloniki, Greece. Atmos Environ, Part B Urban Atmos 27(3):313–319

    Article  Google Scholar 

  • Vedal S (1997) Critical review: ambient particles and health: lines that divide. J Air Waste Manag Assoc 47(5):551–581

    Article  CAS  Google Scholar 

  • Walker JT, Whitall DR, Robarge W, Paerl HW (2004) Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmos Environ 38(9):1235–1246

    Article  CAS  Google Scholar 

  • Wang M, Hu M (2000) Sea salt source contribution to the aerosol in Qingdao seashore area. J Environ Sci-China 21(5):83–85

    CAS  Google Scholar 

  • Wang Q, Shao M, Zhang Y, Wei Y, Hu M, Guo S (2009) Source apportionment of fine organic aerosols in Beijing. Atmos Chem Phys 9:8573–8585

    Article  CAS  Google Scholar 

  • Wang Y, Zhuang GS, Tang AH, Yuan H, Sun YL, Chen S, Zheng AH (2005) The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos Environ 39(21):3771–3784

    Article  CAS  Google Scholar 

  • Watson JG (2002) Critical review discussion. Visibility: science and regulation. J Air Waste Manag Assoc 52:628–713

    Article  Google Scholar 

  • Wongphatarakul V, Friedlander SK, Pinto JP (1998) A comparative study of PM2.5 ambient aerosol chemical databases. Environ Sci Technol 32(24):3926–3934

    Article  CAS  Google Scholar 

  • Yang FM, He KB, Ma YL, Zhnag Q (2004) Characterization of mass balance of PM2.5 chemical speciation in Beijing. Environ Chem-China 23(3):326–333

    Article  CAS  Google Scholar 

  • Yao XH, Chan CK, Fang M, Cadle S, Chan T, Mulawa P, He K, Ye B (2002) The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos Environ 36(26):4223–4234

    Article  CAS  Google Scholar 

  • Yao XH, Lau APS, Fang M, Chan CK, Hu M (2003) Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1-inorganic ions. Atmos Environ 37(21):2991–3000

    Article  CAS  Google Scholar 

  • Zhang Z, Friedlander SK (2000) A comparative study of chemical databases for fine particle Chinese aerosols. Environ Sci Technol 34(22):4687–4694

    Article  CAS  Google Scholar 

  • Zheng M, Salmon LG, Schauer JJ, Zeng L, Kiang CS, Zhang Y, Cass GR (2005) Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos Environ 39:3967–3976

    Article  CAS  Google Scholar 

  • Zhou JM, Zhang RJ, Cao JJ, Chow JC, Watson JG (2012) Carbonaceous and ionic components of atmospheric fine particles in Beijing and their impact on atmospheric visibility. Aerosol Air Qual Res 12:492–502

    CAS  Google Scholar 

Download references

Acknowledgments

This study was projected by Tianjin Science and Technology Development Commission (11JCYBJC05200), Ministry of Environmental Protection of China (2010467007), and Jinan Science and Technology Development Commission (201101090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Peng Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Du, S., Han, D. et al. Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China. Air Qual Atmos Health 7, 251–262 (2014). https://doi.org/10.1007/s11869-013-0232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-013-0232-9

Keywords

Navigation