Skip to main content

Advertisement

Log in

Synoptic detection of the short-term atmospheric precursors prior to a major earthquake in the Middle East, North Saravan M 7.8 earthquake, SE Iran

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

At the present study, we applied a synoptic prospect to the analysis of the short-term atmospheric precursors that occurred prior to a major earthquake. The North Saravan M 7.8 earthquake on April 16, 2013 was the first major recorded earthquake in the Middle East for the past 40 years. We compiled the eight atmospheric variables during March, April, and May of 2013 by using NASA/Giovanni and NOAA/NCEP data. According to the anomaly detection of variables, we determined the sudden increasing anomalies for surface-specific humidity, surface-latent heat flux, and surface-wind velocity on April 8–9, of 2013, 6–7 days prior to the earthquake. After the O3 and NO2 anomalous records and long-term anomaly of pressure levels, we observed the abnormal cloud fractions generated due to a severe greenhouse effect and a violent low geopotential height. Based on satellite observations as obtained from MODIS and Meteosat data, we exposed the local-waved shape of low clouds and circular pattern of high clouds in the synoptic scale, respectively. We believed the greenhouse effect plays a main role in triggering the chain of increased anomalous atmospheric variations, ascending air turbulence, and abnormal cloud circulation 1 week prior to the M 7.8 earthquake. Over the results, we propose to use the continuous monitoring of greenhouse and reactive gasses release, e.g., O3, CH4, NO2, SO2, etc. as the motive precursor of earthquake precursor’s chain, to detection of possible major earthquakes in the active fault region of the Makran subduction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. National Aeronautics and Space Administration

  2. Geospatial Interactive Online Visualization and Analysis Infrastructure (Giovanni) is a web-based application developed by Goddard Earth Sciences Data and Information Services Center (GES DISC) that provides an intuitive way to visualize, analyze, and access Earth science remote sensing data.

  3. National Oceanic and Atmospheric Administration

  4. National Centers for Environmental Prediction

  5. Moderate Resolution Imaging Spectroradiometer

  6. Polar–Orbiting Operational Environmental Satellite

  7. Indian Ocean Data Coverage Imagery

  8. Geostationary Operational Environmental Satellite

  9. Taftan is among the active Makran volcanic belt and was formed by subduction of the Oman oceanic lithosphere underneath the continental Eurasia plate (Biabangard and Moradian 2008). The Taftan volcano is a calc–alkaline type, and the magma, which generated it, is the result of a compressive regime (Berberian and King 1981). The main volcanic activity belongs to the Neogene compressional phase but the subduction probably is initiated in the Paleocene (Platt et al. 1988) which associated tectonism has been triggering volcanism and magmatic events. Taftan volcano is pointed as a strongly eroded andesitic stratovolcano in the Global Volcanism Program via (http://www.volcano.si.edu), which is hosted by the National Museum of Natural History, USA.

  10. Hierarchical Data Format

References

  • Aleksandrov NL, Bazelyan EM, Carpenter RB, Drabkin MM, Raizer YP (2001) The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps. J Phys D Appl Phys 34(22):3256–3266

    Article  CAS  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18(2):210–265

    Article  Google Scholar 

  • Biabangard H, Moradian A (2008) Geology and geochemical evaluation of Taftan Volcano, Sistan and Baluchestan Province, southeast of Iran. Chin J Geochem 27(4):356–369

    Article  CAS  Google Scholar 

  • Bo Z, Xuejun L, Weiyu M (2011) The analysis of celestial tectonics-generating force’s inducing effect to the M7.3 Japan earthquake on 9th, March 2011. Procedia Environ Sci 10(c):2005–2009

    Article  Google Scholar 

  • Bowman KW, Shindell DT, Worden HM, Lamarque JF, Young PJ, Stevenson DS, Qu Z, de la Torre M, Bergmann D, Cameron–Smith PJ, Collins WJ, Doherty R, Dalsøren SB, Faluvegi G, Folberth G, Horowitz LW, Josse BM, Lee YH, MacKenzie IA, Myhre G, Nagashima T, Naik V, Plummer DA, Rumbold ST, Skeie RB, Strode SA, Sudo K, Szopa S, Voulgarakis A, Zeng G, Kulawik SS, Aghedo AM, Worden JR (2013) Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos Chem Phys 8(13):4057–4072

    Article  Google Scholar 

  • Choudhury S, Dasgupta S, Saraf AK, Panda S (2006) Remote sensing observations of pre-earthquake thermal anomalies in Iran. Int J Remote Sens 27(20):4381–4396

    Article  Google Scholar 

  • Cicerone RD, Ebel JE, Britton J (2009) A systematic compilation of earthquake precursors. Tectonophysics 476(3–4):371–396

    Article  Google Scholar 

  • Chylek P, Robinson S, Dukey MK, King MD, Fu Q, Clodius WB (2006) Comparison of near-infrared and thermal infrared cloud phase detections. J Geophys Res: Atmos 111:D20

    Google Scholar 

  • Dahm CN, Baross JA, Ward AK, Lilley MD, Sedell JR (1983) Initial effects of the Mount St. Helens eruption on nitrogen cycle and related chemical processes in Ryan Lake. Appl Environ Microbiol 45(5):1633–1645

    CAS  Google Scholar 

  • Dey S, Sarkar S, Singh RP (2004) Anomalous changes in column water vapor after Gujarat earthquake. Adv Space Res 33(3):274–278

    Article  CAS  Google Scholar 

  • EMSC (2013) Technical report of M 7.8 Iran–Pakistan border region on April 16th 2013 at 10:44 UTC. European–Mediterranean Seismological Centre

  • Fischer D, Mogollón JM, Strasser M, Pape T, Bohrmann G, Fekete N, Spiess V, Kasten S (2013) Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nat Geosci 6(8):647–651

    Article  CAS  Google Scholar 

  • Freund FT (2003) Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena. J Sci Explor 17(1):37–71

    Google Scholar 

  • Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan–Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmos Solar–Terr Phys 71(17–18):1824–1834

    Article  CAS  Google Scholar 

  • Genzano N, Aliano C, Filizzola C, Pergola N, Tramutoli V (2007) A robust satellite technique for monitoring seismically active areas: the case of Bhuj–Gujarat earthquake. Tectonophysics 431(1–4):221–230

    Google Scholar 

  • GSI (2013) Preliminary report of April 16 2013 North Saravan strong earthquake (Mw = 7.8), SE Iran. Geological Survey of Iran

  • Guangmeng G (2008) Studying thermal anomaly before earthquake with NCEP data. Int Arch Photogramm Remote Sens Spat Inf Sci 35(1):295–298

    Google Scholar 

  • Guangmeng G, Jie Y (2013) Three attempts of earthquake prediction with satellite cloud images. Nat Hazards Earth Syst Sci 13(1):91–95

    Article  Google Scholar 

  • Guo G, Wang B (2008) Cloud anomaly before Iran earthquake. Int J Remote Sens 29(7):1921–1928

    Article  Google Scholar 

  • Halbach P, Holzbecher E, Reichel T, Moche R (2004) Migration of the sulphate–methane reaction zone in marine sediments of the Sea of Marmara—can this mechanism be tectonically induced? Chem Geol 205(1–2):73–82

    Article  CAS  Google Scholar 

  • Hayakawa M, Molchanov OA (2002) Seismo electromagnetics: lithosphere–atmosphere–ionosphere coupling. TERRAPUB, Tokyo, p 477

    Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH, Yalciner AC, Mokhtari M, Esmaeily A (2008) Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng 35(8–9):774–786

    Article  Google Scholar 

  • Holliday JR, Rundle JB, Tiampo KF, Turcotte DL (2006) Using earthquake intensities to forecast earthquake occurrence times. Nonlinear Process Geophys 13(5):585–593

    Article  Google Scholar 

  • Hsu SC, Huang YT, Huang JC, Tu JY, Engling G, Lin CY, Lin FJ, Huang CH (2010) Evaluating real-time air-quality data as earthquake indicator. Sci Total Environ 408(11):2299–2304

    Article  CAS  Google Scholar 

  • Kahn BH, Nasiri SL, Schreier MM, Baum BA (2011) Impacts of subpixel cloud heterogeneity on infrared thermodynamic phase assessment. J Geophys Res 116:D20

    Google Scholar 

  • Keilis–Borok V (2003) Fundamentals of earthquake prediction: four paradigms. In: Keilis–Borok V, Soloviev AA (eds) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, New York, pp 1–36

    Chapter  Google Scholar 

  • Kukowski N, Schillhorn T, Huhn K, von Rad U, Husen S, Flueh ER (2001) Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Marine Geology Geol 173(1–4):1–19

    Article  Google Scholar 

  • Liperovsky VA, Pokhotelov OA, Liperovskaya EV, Parrot M, Meister CV, Alimov OA (2000) Modification of sporadic E–layers caused by seismic activity. Surv Geophys 21(5–6):449–486

    Article  Google Scholar 

  • Liperovsky VA, Meister CV, Liperovskaya EV, Davidov VF, Bogdanov VV (2005) On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Nat Hazards Earth Syst Sci 5(6):783–789

    Article  Google Scholar 

  • Mather TA, Allen AG, Davison BM, Pyle DM, Oppenheimer C, McGonigle AJS (2004) Nitric acid from volcanoes. Earth Planet Sci Lett 218(1–2):17–30

    Article  CAS  Google Scholar 

  • Mcnutt MK, Diament M, Kogan MG (1988) Variations of elastic plate thickness at continental thrust. J Geophys Res 93(10):8825–8838

    Article  Google Scholar 

  • Morozova LI (2005) Satellite monitoring of earthquakes. Dalnauka, Vladivostok, p 136

    Google Scholar 

  • Ouzounov D, Bryant N, Logan T, Pulinets S, Taylor P (2006) Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Phys Chem Earth 31(4–9):154–163

    Article  Google Scholar 

  • Ouzounov D, Freund F (2004) Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Res 33(3):268–273

    Article  Google Scholar 

  • Ouzounov D, Liu D, Chunli K, Cervone G, Kafatos M, Taylor P (2007) Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 431(1–4):211–220

    Article  Google Scholar 

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosc Remote Sens 41(2):459–473

    Article  Google Scholar 

  • Platt JP, Leggett JK, Alam S (1988) Slip vectors and fault mechanics in the Makran accretionary wedge, southwest Pakistan. J Geophys Res: Solid Earth 93(B7):7955–7973

    Article  Google Scholar 

  • Pulinets SA (2006) Space technologies for short-term earthquake warning. Adv Space Res 37(4):643–652

    Article  Google Scholar 

  • Pulinets SA (2011) The synergy of earthquake precursors. Earthq Sci 24(6):535–548

    Article  Google Scholar 

  • Pulinets S (2004) Ionospheric precursors of earthquakes; recent advances in theory and practical applications. TAO 15(3):41–435

    Google Scholar 

  • Pulinets SA, Ouzounov D (2011) Lithosphere–atmosphere–ionosphere coupling (LAIC) model—a unified concept for earthquake precursors validation. J Asian Earth Sci 41(4–5):371–382

    Article  Google Scholar 

  • Pulinets SA, Ouzounov D, Ciraolo L, Singh R, Cervone G, Leyva A, Dunajecka M, Karelin AV, Boyarchuk KA, Kotsarenko A (2006a) Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Ann Geophys 24(3):835–849

    Article  Google Scholar 

  • Pulinets SA, Ouzounov D, Karelin AV, Boyarchuk KA, Pokhmelnykh LA (2006b) The physical nature of the thermal anomalies observed before strong earthquakes. Phys Chem Earth 31(4–9):143–153

    Article  Google Scholar 

  • Pulinets SA, Romanov AA, Urlichich YM, Romanov A Jr, Doda LN, Ouzounov D (2009) The first results of the pilot project on complex diagnosing earthquake precursors on Sakhalin. Geomagn Aeron 49(1):115–123

    Article  Google Scholar 

  • Rawat V, Saraf AK, Das JD, Sharma K, Shujat Y (2011) Anomalous land surface temperature and outgoing long–wave radiation observations prior to earthquakes in India and Romania. Nat Hazards 59(1):33–46

    Article  Google Scholar 

  • Saraf AK, Rawat V, Banerjee P, Choudhury S, Panda SK, Dasgupta S, Das JD (2008) Satellite detection of earthquake thermal precursors in Iran. Nat Hazards 47(1):119–135

    Article  Google Scholar 

  • Saradjian MR, Akhoondzadeh M (2011) Thermal anomalies detection before strong earthquakes (M > 6.0) using inter quartile, wavelet and Kalman filter methods. Nat Hazards Earth Syst Sci 11(4):1099–1108

    Article  Google Scholar 

  • Shakeri A, Moore F, Kompani Zare M (2008) Geochemistry of the thermal springs of Mount Taftan, southeastern Iran. J Volcanol Geotherm Res 178(4):829–836

    Article  CAS  Google Scholar 

  • Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326(5953):716–718

    Article  CAS  Google Scholar 

  • Shou Z (2006) Earthquake vapour, a reliable precursor. In: Mukherjee S (ed) Earthquake prediction. Brill Academic Publisher, Leiden–Boston, pp 21–51

    Google Scholar 

  • Stein S, Okal EA (2007) Ultra long period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull Seismol Soc Am 97(1A):S279–S295

    Article  Google Scholar 

  • Stevenson DS, Dentener FJ, Schultz MG, Ellingsen K, van Noije TPC, Wild O, Zeng G, Amann M, Atherton CS, Bell N, Bergmann DJ, Bey I, Butler T, Cofala J, Collins WJ, Derwent RG, Doherty RM, Drevet J, Eskes HJ, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque JF, Lawrence MG, Montanaro V, Müller JF, Pitari G, Prather MJ, Pyle JA, Rast S, Rodriguez JM, Sanderson MG, Savage NH, Shindell DT, Strahan SE, Sudo K, Szopa S (2006) Multimodel ensemble simulations of present–day and near–future tropospheric ozone. J Geophys Res: Atmos 111(D8):301

    Google Scholar 

  • Svensmark H, Pedersen JOP, Marsch ND, Enghoff MB, Uggerhøj UI (2007) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc R Soc A 463(2078):385–396

    Article  CAS  Google Scholar 

  • Teramoto K, Ikeya M (2000) Experimental study of cloud formation by intense electric fields. Jpn J Appl Phys 39(5A):2876–2881

    Article  CAS  Google Scholar 

  • Tramutoli V, Cuomob V, Filizzolab C, Pergolab N, Pietrapertosa C (2005) Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: the case of Kocaeli (Izmit) earthquake. Remote Sens Environ 96(3–4):409–426, August 17, 1999

    Article  Google Scholar 

  • Tronin AA (2006) Remote sensing and earthquakes: a review. Phys Chem Earth 31(4–9):138–142

    Article  Google Scholar 

  • USGS (2013) Technical report of M7.8 – 83 km E of Khash, Iran 2013–04–16 10:44:20 UTC. United States Geological Survey

  • Voulgarakis A, Naik V, Lamarque JF, Shindell DT, Young PJ, Prather MJ, Wild O, Field RD, Bergmann D, Cameron Smith P, Cionni I, Collins WJ, Dalsøren SB, Doherty RM, Eyring V, Faluvegi G, Folberth GA, Horowitz LW, Josse B, MacKenzie IA, Nagashima T, Plummer DA, Righi M, Rumbold ST, Stevenson DS, Strode SA, Sudo K, Szopa S, Zeng G (2013) Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos Chem Phys Discuss 13:2563–2587

    Article  CAS  Google Scholar 

  • Weiran Y, Zuoxun Z, Dewei L, Jishan X, Jie W, Wenxing L (2009) Three–level tectonic model for intraplate earthquakes. Earth Sci Front 16(1):206–217

    Article  Google Scholar 

  • Yarnal B, Comrie AC, Frakes B, Brown DP (2001) Developments and prospects in synoptic climatology. Int J Climatol 21(15):1923–1950

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the NASA/Giovanni and NOAA/NCEP on web data centers for transmission of reanalysis data. We like to thank Mrs. Somayeh Rezayi for data preparation. Thanks also to one anonymous reviewer for suggestions on data interpretations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mansouri Daneshvar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansouri Daneshvar, M.R., Tavousi, T. & Khosravi, M. Synoptic detection of the short-term atmospheric precursors prior to a major earthquake in the Middle East, North Saravan M 7.8 earthquake, SE Iran. Air Qual Atmos Health 7, 29–39 (2014). https://doi.org/10.1007/s11869-013-0214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-013-0214-y

Keywords

Navigation