Skip to main content
Log in

Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Studies on the health effects of air-pollution particles suggest that injury may result from inhalation of airborne ultrafine particles (<100 nm in diameter). Engineered nanomaterials (<100 nm in at least one dimension) may also be harmful if inhaled. Nanomaterials deposited on the respiratory epithelial tract are thought to cross the air-blood barrier, especially via the expansive alveolar region, into the systemic circulation to reach end organs (e.g., myocardium, liver, pancreas, kidney, and spleen). Since ambient ultrafine particles are difficult to track, studies of defined engineered nanomaterials have been used to obtain valuable information on how nanomaterials interact with and traffic across the air-blood barrier of mammalian lungs. Since specific mechanistic information on how nanomaterials interact with the lung is difficult to obtain using in vivo or ex vivo lungs due to their complex anatomy, in vitro alveolar epithelial models have been of considerable value in determining nanomaterial-lung interactions. In this review, we provide information on mechanisms underlying lung alveolar epithelial injury caused by various nanomaterials and on nanomaterial trafficking across alveolar epithelium that may lead to end-organ injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adson A, Raub TJ, Burton PS et al (1994) Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci 83:1529–1536

    CAS  Google Scholar 

  • Anglin EJ, Cheng L, Freeman WR et al (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277

    CAS  Google Scholar 

  • Baker GL, Gupta A, Clark ML et al (2008) Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101:122–131

    CAS  Google Scholar 

  • Bakry R, Vallant RM, Najam-ul-Haq M et al (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2:639–649

    CAS  Google Scholar 

  • Bakshi MS, Zhao L, Smith R et al (2008) Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J 94:855–868

    CAS  Google Scholar 

  • Beckett WS, Chalupa DF, Pauly-Brown A et al (2005) Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 171:1129–1135

    Google Scholar 

  • Berry JP, Arnoux B, Stanislas G et al (1977) A microanalytic study of particles transport across the alveoli: role of blood platelets. Biomedicine 27:354–357

    CAS  Google Scholar 

  • Borm P, Klaessig FC, Landry TD et al (2006a) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    CAS  Google Scholar 

  • Borm PJ, Robbins D, Haubold S et al (2006b) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Google Scholar 

  • Bosi S, Feruglio L, Da Ros T et al (2004) Hemolytic effects of water-soluble fullerene derivatives. J Med Chem 47:6711–6715

    CAS  Google Scholar 

  • Bottini M, D’Annibale F, Magrini A et al (2007) Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomedicine 2:227–233

    CAS  Google Scholar 

  • Brown JS, Zeman KL, Bennett WD (2002) Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166:1240–1247

    Google Scholar 

  • Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    CAS  Google Scholar 

  • Camps X, Hirsch A (1997) Efficient cyclopropanation of C60 from malonates. JCS Perkin Trans 1:1595–1596

    Google Scholar 

  • Card JW, Zeldin DC, Bonner JC et al (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:L400–L411

    CAS  Google Scholar 

  • Cheek JM, Evans MJ, Crandall ED (1989a) Type I cell-like morphology in tight alveolar epithelial monolayers. Exp Cell Res 184:375–387

    CAS  Google Scholar 

  • Cheek JM, Kim KJ, Crandall ED (1989b) Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am J Physiol 256:C688–C693

    CAS  Google Scholar 

  • Cho SJ, Maysinger D, Jain M et al (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980

    CAS  Google Scholar 

  • Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    CAS  Google Scholar 

  • Cohen MS, Stern JM, Vanni AJ et al (2007) In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect (Larchmt) 8:397–403

    Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    CAS  Google Scholar 

  • Deguchi S, Yamazaki T, Mukai SA et al (2007) Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem Res Toxicol 20:854–858

    CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Materials 16:961–969

    CAS  Google Scholar 

  • Dick CA, Brown DM, Donaldson K et al (2003) The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15:39–52

    CAS  Google Scholar 

  • Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    CAS  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA et al (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Google Scholar 

  • Donaldson K, Aitken R, Tran L et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    CAS  Google Scholar 

  • Eichmann SL, Anekal SG, Bevan MA (2008) Electrostatically confined nanoparticle interactions and dynamics. Langmuir 24:714–721

    CAS  Google Scholar 

  • Erogbogbo F, Yong KT, Roy I et al (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878

    CAS  Google Scholar 

  • Evans SA, Al-Mosawi A, Adams RA et al (2006) Inflammation, edema, and peripheral blood changes in lung-compromised rats after instillation with combustion-derived and manufactured nanoparticles. Exp Lung Res 32:363–378

    CAS  Google Scholar 

  • Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542

    CAS  Google Scholar 

  • Frampton MW (2001) Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ Health Perspect 109(Suppl 4):529–532

    CAS  Google Scholar 

  • Frampton MW, Utell MJ, Zareba W et al. (2004) Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst (126):1–47; discussion 49–63

  • Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    CAS  Google Scholar 

  • Furuyama A, Kanno S, Kobayashi T et al (2009) Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol 83:429–437

    CAS  Google Scholar 

  • Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2

    Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Google Scholar 

  • Geiser M, Casaulta M, Kupferschmid B et al (2008) The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38:371–376

    CAS  Google Scholar 

  • Geys J, Nemmar A, Verbeken E et al (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116:1607–1613

    CAS  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M et al (2005) C60 fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    CAS  Google Scholar 

  • Gojova A, Guo B, Kota RS et al (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409

    CAS  Google Scholar 

  • Gold DR, Litonjua A, Schwartz J et al (2000) Ambient pollution and heart rate variability. Circulation 101:1267–1273

    CAS  Google Scholar 

  • Goldberg MS, Bailar JC III, Burnett RT et al (2000) Identifying subgroups of the general population that may be susceptible to short-term increases in particulate air pollution: a time-series study in Montreal, Quebec. Res Rep Health Eff Inst 97:7–113, discussion 115–120

    Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    CAS  Google Scholar 

  • Gurr JR, Wang AS, Chen CH et al (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    CAS  Google Scholar 

  • Hamoir J, Nemmar A, Halloy D et al (2003) Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: role of size and surface properties. Toxicol Appl Pharmacol 190:278–285

    CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Google Scholar 

  • Heckel K, Kiefmann R, Dorger M et al (2004) Colloidal gold particles as a new in vivo marker of early acute lung injury. Am J Physiol Lung Cell Mol Physiol 287:L867–L878

    CAS  Google Scholar 

  • Hefland RB, Schwarzel PE, Johansen BV et al (2001) Silica-induced cytokine release from A549 cells: importance of surface area versus size. Hum Exp Toxicol 20:46–55

    Google Scholar 

  • Helland A, Wick P, Koehler A et al (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115:1125–1131

    CAS  Google Scholar 

  • Helland A, Wick P, Koehler A et al (2008) Reviewing the environmental and human health knowledge base of carbon nanotubes. Ciên Saúde Colet 13:441–452

    Google Scholar 

  • Henneberger A, Zareba W, Ibald-Mulli A et al (2005) Repolarization changes induced by air pollution in ischemic heart disease patients. Environ Health Perspect 113:440–446

    CAS  Google Scholar 

  • Hoet PH, Nemmar A, Nemery B (2004) Health impact of nanomaterials? Nat Biotechnol 22:19

    CAS  Google Scholar 

  • Hong S, Bielinska AU, Mecke A et al (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782

    CAS  Google Scholar 

  • Hong S, Hessler JA, Banaszak Holl MM et al (2006a) Physical interactions of nanoparticles with biological membranes: the observation of nanoscale hole formation. Chem Health Saf 13:16–20

    Google Scholar 

  • Hong S, Leroueil PR, Jnaus EK et al (2006b) Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjugate Chem 17:728–734

    CAS  Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    CAS  Google Scholar 

  • Isakovic A, Markovic Z, Todorovic-Markovic B et al (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183

    CAS  Google Scholar 

  • Jacobsen NR, Moller P, Jensen KA et al (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2

    Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711

    CAS  Google Scholar 

  • Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    CAS  Google Scholar 

  • Kam NWS, Jessop TC, Wender PA et al (2004) Nanotube molecular transporters: internalization of carbon nano-tube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    CAS  Google Scholar 

  • Karabanovas V, Zakarevicius E, Sukackaite A et al (2008) Examination of the stability of hydrophobic (CdSe)ZnS quantum dots in the digestive tract of rats. Photochem Photobiol Sci 7:725–729

    CAS  Google Scholar 

  • Karlsson HL, Nygren J, Moller L (2004) Genotoxicity of airborne particulate matter: the role of cell-particle interaction and of substances with adduct-forming and oxidizing capacity. Mutat Res 565:1–10

    CAS  Google Scholar 

  • Karlsson HL, Nilsson L, Moller L (2005) Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem Res Toxicol 18:19–23

    CAS  Google Scholar 

  • Karlsson HL, Ljungman AG, Lindbom J et al (2006) Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicol Lett 165:203–211

    CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J et al (2008a) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    CAS  Google Scholar 

  • Karlsson HL, Holgersson A, Moller L (2008b) Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem Res Toxicol 21:726–731

    CAS  Google Scholar 

  • Kato T, Yashiro T, Murata Y et al (2003) Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311:47–51

    Google Scholar 

  • Kawakami K, Iwamura A, Goto E et al (1990) Kinetics and clinical application of 99mTc-Technegas. Kaku Igaku (Japan) 27:725–733

    CAS  Google Scholar 

  • Kemp SJ, Thorley AJ, Gorelik J et al (2008) Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. Am J Respir Cell Mol Biol 39:591–597

    CAS  Google Scholar 

  • Kim KJ, Crandall ED (1983) Heteropore populations of bullfrog alveolar epithelium. J Appl Physiol 54:140–146

    CAS  Google Scholar 

  • Kim KJ, Crandall ED (1996) Models for investigation of peptide and protein transport across cultured mammalian respiratory epithelial barriers. Pharm Biotechnol 8:325–346

    CAS  Google Scholar 

  • Kim KJ, Malik AB (2003) Protein transport across the lung epithelial barriers. Am J Physiol Lung Cell Mol Physiol 284:L247–L259

    CAS  Google Scholar 

  • Kim KJ, Matsukawa Y, Yamahara H et al (2003) Absorption of intact albumin across rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 284:L458–L465

    CAS  Google Scholar 

  • Kim KJ, Fandy TE, Lee VH et al (2004) Net absorption of IgG via FcRn-mediated transcytosis across rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 287:L616–L622

    CAS  Google Scholar 

  • Kleinstreuer C, Zhang Z, Donohue JF (2008) Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng 10:195–220

    CAS  Google Scholar 

  • Knol AB, de Hartog JJ, Boogaard H et al (2009) Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol 6:19

    Google Scholar 

  • Konig MF, Lucocq JM, Weibel ER (1993) Demonstration of pulmonary vascular perfusion by electron and light microscopy. J Appl Physiol 75:1877–1883

    CAS  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530

    CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Moller W (2006a) Health implications of nanoparticles. J Nanopart Res 8:543–562

    CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Moller W (2006b) Ultrafine particle-lung interactions: does size matter? J Aerosol Med 19:74–83

    CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Seitz J et al (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21(Suppl 1):55–60

    CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien S et al (1985) C60-Buckminsterfullerene. Nature 318:162–163

    CAS  Google Scholar 

  • Lam HF, Chen LC, Ainsworth D et al (1988) Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J 49:333–341

    CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R et al (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    CAS  Google Scholar 

  • Law WC, Yong KT, Roy I et al (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5:1302–1310

    CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    CAS  Google Scholar 

  • Li D, He Q, Cui Y et al (2007) Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem Biophys Res Commun 355:488–493

    CAS  Google Scholar 

  • Liao D, Creason J, Shy C et al (1999) Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect 107:521–525

    CAS  Google Scholar 

  • Lin P, Chen JW, Chang LW et al (2008) Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ Sci Technol 42:6264–6270

    CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    CAS  Google Scholar 

  • Lovric J, Bazzi HS, Cuie Y et al (2005a) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Google Scholar 

  • Lovric J, Cho SJ, Winnik FM et al (2005b) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    CAS  Google Scholar 

  • Male KB, Lachance B, Hrapovic S et al (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493

    CAS  Google Scholar 

  • Matsukawa Y, Lee VH, Crandall ED et al (1997) Size-dependent dextran transport across rat alveolar epithelial cell monolayers. J Pharm Sci 86:305–309

    CAS  Google Scholar 

  • McIntosh CM, Esposito EA 3 rd, Boal AK et al (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629

    CAS  Google Scholar 

  • Mecke A, Majoros IJ, Patri AK et al (2005) Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21:10348–10354

    CAS  Google Scholar 

  • Mehta D, Bhattacharya J, Matthay MA et al (2004) Integrated control of lung fluid balance. Am J Physiol Lung Cell Mol Physiol 287:L1081–L1090

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC (2001) Capture of stealth nanoparticles by the body’s defences. Crit Rev Ther Drug Carrier Syst 18:527–550

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    CAS  Google Scholar 

  • Monteiro-Riviere NA, Tran CL (2007) Nanotoxicology: characterization, dosing, and health effects. Informa Healthcare, New York

    Google Scholar 

  • Moon MH, Kang D, Jung J et al (2004) Separation of carbon nanotubes by frit inlet asymmetrical flow field-flow fractionation. J Sep Sci 27:710–717

    CAS  Google Scholar 

  • Muhlfeld C, Rothen-Rutishauser B, Blank F et al (2008) Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol 294:L817–L829

    CAS  Google Scholar 

  • Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    CAS  Google Scholar 

  • Muller J, Decordier I, Hoet PH et al (2008a) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29:427–433

    CAS  Google Scholar 

  • Muller J, Huaux F, Fonseca A et al (2008b) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21:1698–1705

    CAS  Google Scholar 

  • Mutlu GM, Green D, Bellmeyer A et al (2007) Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest 117:2952–2961

    CAS  Google Scholar 

  • Mutlu GM, Budinger GR, Green AA et al (2010) Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett 10(5):1664–1667

    CAS  Google Scholar 

  • Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    CAS  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts MF et al (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668

    CAS  Google Scholar 

  • Nemmar A, Hoet PH, Vanquickenborne B et al (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    CAS  Google Scholar 

  • Nemmar A, Hoylaerts MF, Hoet PH et al (2003) Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 186:38–45

    CAS  Google Scholar 

  • Nemmar A, Hoylaerts MF, Hoet PH et al (2004) Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett 149:243–253

    CAS  Google Scholar 

  • Niemeyer CM, Mirkin CA (2004) Nanobiotechnology. Wiley-VCH, Weinheim

    Google Scholar 

  • Oberdorster G (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Health Effects Institute, Cambridge

    Google Scholar 

  • Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8

    CAS  Google Scholar 

  • Oberdorster G (2002) Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 14:29–56

    CAS  Google Scholar 

  • Oberdorster G, Ferin J, Gelein R et al (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 97:193–199

    CAS  Google Scholar 

  • Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179

    Google Scholar 

  • Oberdorster G, Gelein RM, Ferin J et al (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol 7:111–124

    CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V et al (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543

    CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    CAS  Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    CAS  Google Scholar 

  • Orr G, Panther DJ, Cassens KJ et al (2009) Syndecan-1 mediates the coupling of positively charged submicrometer amorphous silica particles with actin filaments across the alveolar epithelial cell membrane. Toxicol Appl Pharmacol 236:210–220

    CAS  Google Scholar 

  • Park S, Lee YK, Jung M et al (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19(Suppl 1):S59–S65

    Google Scholar 

  • Partha R, Lackey M, Hirsch A et al (2007) Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures. J Nanobiotechnology 5:6

    Google Scholar 

  • Peters A, Liu E, Verrier RL et al (2000) Air pollution and incidence of cardiac arrhythmia. Epidemiology 11:11–17

    CAS  Google Scholar 

  • Peters A, Frohlich M, Doring A et al (2001) Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur Heart J 22:1198–1204

    CAS  Google Scholar 

  • Pietropaoli AP, Frampton MW, Hyde RW et al (2004) Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol 16(Suppl 1):59–72

    CAS  Google Scholar 

  • Politis M, Pilinis C, Lekkas TD (2008) Ultrafine particles (UFP) and health effects. Dangerous. Like no other PM? Review and analysis. Global NEST J 10:439–452

    Google Scholar 

  • Porter AE, Muller K, Skepper J et al (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater 2:409–419

    Google Scholar 

  • Porter AE, Gass M, Bendall JS et al (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3:1485–1492

    CAS  Google Scholar 

  • Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007a) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007b) Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett 7:1344–1348

    CAS  Google Scholar 

  • Sauer UG (2009) Animal and non-animal experiments in nanotechnology—the results of a critical literature survey. ALTEX 26:109–128

    Google Scholar 

  • Sayes CM, Fortner JD, Guo W et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    CAS  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    CAS  Google Scholar 

  • Sayes CM, Marchione AA, Reed KL et al (2007a) Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406

    CAS  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007b) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    CAS  Google Scholar 

  • Schlesinger PA, Stillman MT, Peterson L (1982) Polyarthritis with birefringent lipid within synovial fluid macrophages: case report and ultrastructural study. Arthritis Rheum 25:1365–1368

    CAS  Google Scholar 

  • Scrivens W, Tour JM (1994) Synthesis of 14 C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 116:4517–4518

    CAS  Google Scholar 

  • Semmler-Behnke M, Takenaka S, Fertsch S et al (2007) Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airway epithelium. Environ Health Perspect 115:728–733

    CAS  Google Scholar 

  • Shiohara A, Hoshino A, Hanaki K et al (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675

    CAS  Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926

    CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708

    CAS  Google Scholar 

  • Shvedova AA, Fabisiak JP, Kisin ER et al (2008) Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38:579–590

    CAS  Google Scholar 

  • Silva VM, Corson N, Elder A et al (2005) The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol Sci 85:983–989

    CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362

    CAS  Google Scholar 

  • Smart SK, Cassady AI, Lu GQ et al (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    CAS  Google Scholar 

  • Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3:351–358

    CAS  Google Scholar 

  • Spohn P, Hirsch C, Hasler F et al (2009) C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157:1134–1139

    CAS  Google Scholar 

  • Stern ST, Zolnik BS, McLeland CB et al (2008) Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol Sci 106:140–152

    CAS  Google Scholar 

  • Storm G, Belliot SO, Daemen T et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48

    CAS  Google Scholar 

  • Su Y, He Y, Lu H et al (2009) The cytotoxicity of cadmium based, aqueous phase—synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25

    CAS  Google Scholar 

  • Takenaka S, Karg E, Roth C et al (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551

    CAS  Google Scholar 

  • Takenaka S, Karg E, Kreyling WG et al (2004) Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal Toxicol 16(Suppl 1):83–92

    CAS  Google Scholar 

  • Takenaka S, Karg E, Kreyling WG et al (2006) Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 18:733–740

    CAS  Google Scholar 

  • Timonen KL, Vanninen E, de Hartog J et al (2006) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. J Expo Sci Environ Epidemiol 16:332–341

    CAS  Google Scholar 

  • Tokuyama H, Yamago S, Nakamura E et al (1993) Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc 115:7918–7919

    CAS  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229:44–55

    CAS  Google Scholar 

  • Wagner AJ, Bleckmann CA, Murdock RC et al (2007) Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. J Phys Chem B 111:7353–7359

    CAS  Google Scholar 

  • Wallace WE, Keane MJ, Murray DK, et al (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res 9:23–38

    Google Scholar 

  • Wang H, Wang J, Deng X et al (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024

    CAS  Google Scholar 

  • Wang L, Wang K, Santra S et al (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654

    Google Scholar 

  • Wang Y, Camargo PH, Skrabalak SE et al (2008) A facile, water-based synthesis of highly branched nanostructures of silver. Langmuir 24:12042–12046

    CAS  Google Scholar 

  • Warheit DB (2006) What is currently known about the health risks related to carbon nanotube exposures? Carbon 44:1064–1069

    CAS  Google Scholar 

  • Warheit DB, Sayes CM, Reed KL et al (2008) Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42

    CAS  Google Scholar 

  • Wick P, Manser P, Limbach LK et al (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131

    CAS  Google Scholar 

  • Widera A, Beloussow K, Kim KJ et al (2003a) Phenotype-dependent synthesis of transferrin receptor in rat alveolar epithelial cell monolayers. Cell Tissue Res 312:313–318

    CAS  Google Scholar 

  • Widera A, Kim KJ, Crandall ED et al (2003b) Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers. Pharm Res 20:1231–1238

    CAS  Google Scholar 

  • Wiseman DA, Wells SM, Wilham J et al (2006) Endothelial response to stress from exogenous Zn2+ resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression. Am J Physiol 291:C555–C568

    CAS  Google Scholar 

  • Wright EM, Pietras RJ (1974) Routes of nonelectrolyte permeation across epithelial membranes. J Membr Biol 17:293–312

    CAS  Google Scholar 

  • Xia T, Kovochich M, Brant J et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96

    CAS  Google Scholar 

  • Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Google Scholar 

  • Xu Z, Hu PA, Wang S et al (2008) Biological functionalization and fluorescent imaging of carbon nanotubes. Appl Surf Sci 254:1915–1918

    CAS  Google Scholar 

  • Yacobi NR, Phuleria HC, Demaio L et al (2007) Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol In Vitro 21:1373–1381

    CAS  Google Scholar 

  • Yacobi NR, Demaio L, Xie J et al (2008) Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine 4:139–145

    CAS  Google Scholar 

  • Yacobi NR, Malmstadt N, Fazlollahi F et al (2010) Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42:604–614

    CAS  Google Scholar 

  • Yamago S, Tokuyama H, Nakamura E et al (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2:385–389

    CAS  Google Scholar 

  • Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:C1495–C1502

    CAS  Google Scholar 

  • Yang W, Peters JI, Williams RO 3rd (2008) Inhaled nanoparticles—a current review. Int J Pharm 356:239–247

    CAS  Google Scholar 

  • Zhang T, Stilwell JL, Gerion D et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6:800–808

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Hasting Foundation, Whittier Foundation, and research grants from the National Institutes of Health (ES017034, ES018782, HL038578, HL038621, HL062569, HL064365, and HL089445). Zea Borok is Ralph Edgington Chair in Medicine and Edward D. Crandall is Hastings Professor and Kenneth T. Norris Jr. Chair of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Crandall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yacobi, N.R., Fazllolahi, F., Kim, Y.H. et al. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. Air Qual Atmos Health 4, 65–78 (2011). https://doi.org/10.1007/s11869-010-0098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-010-0098-z

Keywords

Navigation