Skip to main content
Log in

Morse’s theory and local linking for a fractional \((p_{1}(\textrm{x}.,), p_{2}(\textrm{x}.,))\): Laplacian problems on compact manifolds

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this paper, we compute critical groups for establishing the existence of solutions for the following fractional \(\displaystyle (p_{1}(\textrm{x},.), p_{2}(\textrm{x},.))\)—Laplacian problem involving a singular term:

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{llll} (\mathcal {L}_{\textrm{g}} ^{s_{1}})_{p_{1}(\textrm{x},.)} \textrm{u}(\textrm{x})+ (\mathcal {L}_{\textrm{g}} ^{s_{2}})_{p_{2}(\textrm{x},.)} \textrm{u}(\textrm{x})&{}=\frac{f(\textrm{x}, \textrm{u}(\textrm{x}))}{ \textrm{u}(\textrm{x})^{\gamma (\textrm{x})}} &{} \text{ in } &{} \mathcal {U}, \\ \quad \textrm{u}&{}> 0 &{} \text{ in } &{} \mathcal {U},\\ \quad \textrm{u}&{}=0 &{} \text{ in } &{} \mathcal {M} \backslash \mathcal {U}. \end{array}\right. \end{aligned} \end{aligned}$$
(1)

More precisely, we use Morse’s relation to prove that our problem has infinitely many solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberqi, A., Bennouna, J., Benslimane, O., Ragusa, M.A.: Existence results for double phase problem in Sobolev Orlicz spaces with variable exponents in complete manifold. Mediterr. J. Math. 19, 158 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aberqi, A., Benslimane, O., Ouaziz, A., Repov\(\breve{s}\), D.D.: On a new fractional Sobolev space with variable exponent on complete manifolds. Bound. Value Probl (2022) arXiv:2110.03289

  3. Aubin, T.: Nonlinear Analysis on Manifolds. Monge Ampere Equations, vol. 252. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  4. Applebaum, D.: Lévy processes from probability to finance quantum groups. Notices Amer. Math. Soc. 51, 1336–1347 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Aris, R.: Mathematical modelling techniques. Research Notes in Mathematics, Vol 24, Boston: Pitman(Advanced Publishing Program) (1979)

  6. Azroul, E., Benkirane, A., Shimi, M., Srati, M.: Eigenvalue problems involving the fractional \(p(x)-\)Laplacian operator. Adv. Oper. Theory 4(2), 539–555 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ayazoglu, R., Saraç, Y., Sener, S., Alisoy, G.: Existence and multiplicity of solutions for a Schrödinger-Kirchhoff type equation involving the fractional p(.,.)-Laplacian operator in RN. Collect. Math. 72, 129-156 (2021)

  8. Bahrouni, A., R\(\check{a}\)dulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst., Ser. S 11(3), 379-389 (2018)

  9. Bartsch, T., Li, S.J.: Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal. 28, 419–441 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benslimane, O., Aberqi, A., Bennouna, J.: The existence and uniqueness of an entropy solution to unilateral Orlicz anisotropic equations in an unbounded domain. Axioms 9, 109 (2020)

    Article  Google Scholar 

  11. Benslimane, O., Aberqi, A., Bennouna, J.: On some nonlinear anisotropic elliptic equations in anisotropic Orlicz space. Arab J. Math. Sci (2020)

  12. Benci, V., Fortunato, D., Pisani, L.: Soliton like solutions of a Lorentz invariant equation in dimension 3. Rev. Math. Phys. 10(3), 315–344 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L.: Non-local diffusions, drifts and games. Nonlinear Partial Diff. Equ. Abel Sym. 7, 37–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, S.Y.A., Gonzalez, M.D.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cherfils, L., Il’Yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \((p-q)\) -Laplacian (2004)

  16. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Choi, E.B., Kim, J.M., Kim, Y.H.: Infinitely many solutions for nonlinear elliptic equations of \(p(x)\)-Laplace type without the Ambrosetti and Rabinowitz condition. Proc. R. Soc. Edinb. 148, 131 (2018)

    Article  Google Scholar 

  18. Derrick, G.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5(9), 1252–1254 (1964)

    Article  MathSciNet  Google Scholar 

  19. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diening, L., Harjulehto, P., M. Ru\(\breve{z}\)ick\(\breve{z}\), M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 239 2017. Springer, Berlin (2011)

  21. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton, NJ (1952)

    Book  MATH  Google Scholar 

  22. Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m,p(x)}(\Omega ).\) J. Math. Anal. Appl. 263, 424-446 (2001)

  23. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems, vol. 28. Springer, Cham (2013)

    MATH  Google Scholar 

  24. Fu, Y.: The principle of concentration compactness in \(L^{p(x)}\) spaces and its application. Nonlinear Anal. Theory Methods Appl. 71, 1876–1892 (2009)

    Article  MATH  Google Scholar 

  25. Guo, L., Zhang, B., Zhang, Y.: Fractional p-Laplacian equations on Riemannian manifolds. Electron. J. Differ. Equ. 2018, 1 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 10051028 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Gaczkowski, M., Gorka, P., Pons, D.J.: Sobolev spaces with variable exponents on complete manifolds. J. Funct. Anal. 270, 13791415 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, J.Q., Su, J.B.: Remarks on multiple nontrivial solutions for quasi-linear resonant problems. J. Math. Anal. Appl. 258, 209–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, H., Fu, Y.: Embedding theorems for variable exponent fractional Sobolev spaces and an application. AIMS Math. 6, 9835–9858 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, J.: The Morse index of a saddle point. J. Syst. Sci. Math. Sci. 2, 32–39 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, vol. 5. Am. Math. Soc, Providence (2000)

    MATH  Google Scholar 

  32. R\(\check{a}\)dulescu, V.D, Repov\(\breve{s}\), D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. CRC Press, Boca Raton (2015)

  33. Papageorgiou, N.S., R\(\check{a}\)dulescu, V.D., Repov\(\breve{s}\), D.D.: Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics, Springer nature, Cham (2019)

  34. Perera, K.: Homological local linking. Abstr. Appl. Anal. 3, 181–189 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ragusa, M.A., Tachikawa, A.: Partial regularity of the minimizers of quadratic functionals with VMO coefficients. J. Lond. Math. Soc. 72, 609–620 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ru\(\breve{z}\)ick\(\breve{z}\), M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. (1748), Springer, Berlin 258 (2000)

  37. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wilhelmsson, H.: Explosive instabilities of reaction-diffusion equations. Phys. Rev. A 36(2), 965 (1987)

    Article  MathSciNet  Google Scholar 

  39. Taarabti, S.: Nonlocal eigenvalue problems with indefinite weight. Methods Funct. Anal. Topol. 26(3), 283–294 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vázquez, J.L.: Growing solutions of the fractional p-Laplacian equation in the fast diffusion range. Nonlinear Anal. 214, 112575 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Samko, S.: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16, 461–482 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Willem, J., Michel, W.: Critical Point Theory and Hamiltonian Systems. Springer, Cham (1989)

    MATH  Google Scholar 

  43. Wu, Y., Taarabti, S.: Existence of Two Positive Solutions for Two Kinds of Fractional. J. Funct. Spaces vol. 2021, 9 pages (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdesslam Ouaziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aberqi, A., Ouaziz, A. Morse’s theory and local linking for a fractional \((p_{1}(\textrm{x}.,), p_{2}(\textrm{x}.,))\): Laplacian problems on compact manifolds. J. Pseudo-Differ. Oper. Appl. 14, 41 (2023). https://doi.org/10.1007/s11868-023-00535-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-023-00535-5

Keywords

Mathematics Subject Classification

Navigation