Skip to main content

Advertisement

Log in

Use of Liquid Biopsy in the Care of Patients with Non-Small Cell Lung Cancer

  • Lung Cancer (TA Leal, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Recent technological advances have enabled the development of liquid biopsy-based approaches, which have revolutionized the diagnostic world. The analysis of circulating tumor DNA (ctDNA) has several clinical applications. First, ctDNA genotyping is becoming widely used for non-invasive biomarker testing. Of note, in lung cancer patients in whom biopsies are difficult to obtain, ctDNA has led to significant improvement in the diagnosis and identification of therapeutic targets. In addition, ctDNA quantification over the course of the disease can be useful for tumor response to treatment monitoring and for early detection of resistance mutations. ctDNA levels per se are also of prognostic significance and could be used to tailor treatments. Finally, improvements in assay sensitivity are facilitating the development of liquid biopsy-based tests for the detection of ctDNA at very low allele frequencies (AFs), which can be used for the measurement of minimal residual disease and ultimately for the development of strategies (by complementing imaging techniques) aimed to improve the efficiency of lung cancer screening programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and recommended reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;0:3–27.

    Google Scholar 

  2. Petersen I. The morphological and molecular diagnosis of lung cancer. Dtsch Arztebl Int. 2011;108(31–32):525–31.

    PubMed  PubMed Central  Google Scholar 

  3. Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N Engl J Med. 2020;383:640–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwak EL, Bang Y-J, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic Lymphoma Kinase Inhibition in Non–Small-Cell Lung Cancer. N Engl J Med. 2010;363:1693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaw AT, Engelman JA. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(26):2537–9.

    Article  PubMed  CAS  Google Scholar 

  6. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.

    Article  CAS  PubMed  Google Scholar 

  7. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomized phase 3 trial. Lancet Oncol. 2012;13:239–46.

    Article  CAS  PubMed  Google Scholar 

  8. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16:409–24 Review of the key technologies that can be used to detect and characterize CTCs in surveillance of MRD and an overview nof similar roles of ctDNA analyses.

  10. • Ettinger DS, Wood DE, Aggarwal C, Aisner DL, Akerley W, Bauman JR, et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, version 1.2020. J Natl Compr Cancer Netw. 2019;17(12):1464–72 Evidence based guidelines insights on management of non-small cell lung cancer with focus on recent updates in immunotherapy.

    Article  CAS  Google Scholar 

  11. Thress KS, Brant R, Carr TH, Dearden S, Jenkins S, Brown H, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. 2015;90:509–15.

    Article  PubMed  Google Scholar 

  12. •• Romero A, Jantus-Lewintre E, García-Peláez B, Royuela A, Insa A, Cruz P, et al. Comprehensive cross-platform comparison of methods for non-invasive EGFR mutation testing: results of the RING observational trial. Mol Oncol. 2021;15:43–56. Several platforms for noninvasive EGFR testing are currently used in the clinical setting with different sensitivities. The RING observational trial supports the use of liquid biopsies for noninvasive EGFR testing and highlights the need to systematically reports mutant allele frequencies (MAFs).

    Article  CAS  PubMed  Google Scholar 

  13. • O’Leary B, Hrebien S, Beaney M, Fribbens C, Garcia-Murillas I, Jiang J, et al. Comparison of beaming and droplet digital PCR for circulating tumor DNA analysis. Clin Chem. 2019;65:1405–13. A large and clinically relevant comparison that shows good agreement between BEAMing and ddPCR, suggesting sufficient reproducibility for clinical use.

    Article  PubMed  CAS  Google Scholar 

  14. Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American society of clinical oncology and college of American pathologists joint review. J Clin Oncol. 2018;36:1631–41. Joint review from ASCO and the College of American Pathologists summarizes current information about clinical ctDNA assays and provides a framework for future research.

  15. • Provencio M, Pérez-Barrios C, Barquin M, Calvo V, Franco F, Sánchez E, et al. Next-generation sequencing for tumor mutation quantification using liquid biopsies. Clin Chem Lab Med. 2020;58(2):306–13. MAFs assessed by NGS were highly correlated with MAFs assessed by dPCR, demonstrating that NGS is a robust technique for ctDNA quantification using clinical samples.

    Article  CAS  PubMed  Google Scholar 

  16. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18:1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al. Cancer: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK -rearranged lung cancer. Cancer Discov. 2016;6:1118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441–8. Retrospective analysis of two large randomized trials. It showed that bTMB reproducibly identifies patients who derive clinically significant improvements in progression-free survival from atezolizumab (an anti-PD-L1) in second-line treatment in NSCLC.

    Article  CAS  PubMed  Google Scholar 

  20. Velcheti V, Kim ES, Mekhail T, Dakhil C, Stella PJ, Shen X, et al. Prospective clinical evaluation of blood-based tumor mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1 L non-small cell lung cancer (NSCLC): Interim B-F1RST results. J Clin Oncol. 2018;36:12001–12001.

    Article  Google Scholar 

  21. Mok TSK, Gadgeel S, Kim ES, Velcheti V, Hu S, Riehl T, et al. Blood first line ready screening trial (B-F1RST) and blood first assay screening trial (BFAST) enable clinical development of novel blood-based biomarker assays for tumor mutational burden (TMB) and somatic mutations in 1 L advanced or metastatic NSCLC. Ann Oncol. 2017;28:v494–5.

    Article  Google Scholar 

  22. Fabrizio D, Malboeuf C, Lieber D, Zhong S, He J, White E, et al. Analytic validation of a next generation sequencing assay to identify tumor mutational burden from blood (bTMB) to support investigation of an anti-PD-L1 agent, atezolizumab, in a first line non-small cell lung cancer trial (BFAST). Ann Oncol. 2017;28:v27.

    Article  Google Scholar 

  23. Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 2017;7:1394–403. This study shows that ctDNA, through cancer personalized profiling by deep sequencing (CAPP-seq), can identify post-treatment Minimal Residual disease (MRD) in patients with localized lung cancer, earlier than standard-of-care radiologic imaging.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab in Stage IV or Recurrent Non–Small-Cell Lung Cancer. N Engl J Med. 2017;376:2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018;378:2093–104. Phase III open-label multipart trial assessing the role of nivolumab plus ipilimumab versus chemotherapy in patients with stage IV or recurrent NSCLC that was not previously treated with chemotherapy and with a high tumor mutational burden (≥10 mutations per megabase). The results validate the benefit of nivolumab plus ipilimumab in NSCLC and the role of tumor mutational burden as a biomarker for patient selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N Engl J Med. 2014;371:2477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ptashkin RN, Mandelker DL, Coombs CC, Bolton K, Yelskaya Z, Hyman DM, et al. Prevalence of clonal hematopoiesis mutations in tumor-only clinical genomic profiling of solid tumors. JAMA Oncol. 2018;4:1589–93.

  30. Swanton C, Venn O, Aravanis A, Hubbell E, Maddala T, Beausang JF, et al. Prevalence of clonal hematopoiesis of indeterminate potential (CHIP) measured by an ultra-sensitive sequencing assay: Exploratory analysis of the Circulating Cancer Genome Atlas (CCGA) study. J Clin Oncol. 2018;36:12003–12003.

    Article  Google Scholar 

  31. Si H, Kuziora M, Quinn KJ, Helman E, Ye J, Liu F, et al. A Blood-based Assay for Assessment of Tumor Mutational Burden in First-line Metastatic NSCLC Treatment: Results from the MYSTIC Study. Clin Cancer Res. 2021;27:1631–40.TMB measured from plasma samples was predictive of clinical benefict in patients tretaed with durvalumad plus tremelimumab versus chemotherapy.

  32. Meddeb R, Pisareva E, Thierry AR. Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA. Clin Chem. 2019;65:623–33.

    Article  CAS  PubMed  Google Scholar 

  33. Pérez-Barrios C, Nieto-Alcolado I, Torrente M, Jiménez-Sánchez C, Calvo V, Gutierrez-Sanz L, et al. Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: Impact on biomarker testing. Transl Lung Cancer Res. 2016;5:665–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Provencio M, Torrente M, Calvo V, Gutiérrez L, Pérez-Callejo D, Pérez-Barrios C, et al. Dynamic circulating tumor DNA quantificaton for the individualization of non-small-cell lung cancer patients treatment. Oncotarget. 2017;8:60291–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Taus Á, Camacho L, Rocha P, Hardy-Werbin M, Pijuan L, Piquer G, et al. Dynamics of EGFR Mutation Load in Plasma for Prediction of Treatment Response and Disease Progression in Patients With EGFR-Mutant Lung Adenocarcinoma. Clin Lung Cancer. 2018;19:387–394.e2.

    Article  CAS  PubMed  Google Scholar 

  37. Winther-Larsen A, Demuth C, Fledelius J, Madsen AT, Hjorthaug K, Meldgaard P, et al. Correlation between circulating mutant DNA and metabolic tumor burden in advanced non-small cell lung cancer patients. Br J Cancer. 2017;117:704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Cheng Y, An T, Gao H, Wang K, Zhou Q, et al. Detection of EGFR mutations in plasma circulating tumor DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir Med. 2018;6:681–90.

    Article  CAS  PubMed  Google Scholar 

  39. Iwama E, Sakai K, Azuma K, Harada T, Harada D, Nosaki K, et al. Monitoring of somatic mutations in circulating cell-free DNA by digital PCR and next-generation sequencing during afatinib treatment in patients with lung adenocarcinoma positive for EGFR activating mutations. Ann Oncol. 2017;28:136–41.

    Article  CAS  PubMed  Google Scholar 

  40. Goldberg SB, Narayan A, Kole AJ, Decker RH, Teysir J, Carriero NJ, et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin Cancer Res. 2018;24:1872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Provencio M, Torrente M, Calvo V, Pérez-Callejo D, Gutiérrez L, Franco F, et al. Prognostic value of quantitative ctDNA levels in non small cell lung cancer patients. Oncotarget. 2017;9(1):488–94.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu YJ, Zhang HB, Liu YH, Zhang FL, Zhu YZ, Li Y, et al. Quantitative cell-free circulating EGFR mutation concentration is correlated with tumor burden in advanced NSCLC patients. Lung Cancer. 2017;109:124–7.

    Article  PubMed  Google Scholar 

  43. Tsui DWY, Murtaza M, Wong ASC, Rueda OM, Smith CG, Chandrananda D, et al. Dynamics of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in non-small cell lung cancer. EMBO Mol Med. 2018;10(6):e7945.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lee Y, Park S, Kim WS, Lee JC, Jang SJ, Choi J, et al. Correlation between progression-free survival, tumor burden, and circulating tumor DNA in the initial diagnosis of advanced-stage EGFR-mutated non-small cell lung cancer. Thorac Cancer. 2018;9:1104–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Yang M, Forbes ME, Bitting RL, O’Neill SS, Chou PC, Topaloglu U, et al. Incorporating blood-based liquid biopsy information into cancer staging: Time for a TNMB system? Ann Oncol. 2018;29:311–23. Review of the biology of ctDNA, current methods of detection and potential applications of this information in tumor diagnosis, treatment, and disease prognosis. They put forward the futuristic concept of TNMB tumor classification, opening a new horizon for precision medicine with the hope of creating better outcomes for cancer patients.

  46. • Hellmann MD, Nabet BY, Rizvi H, Chaudhuri AA, Wells DK, Dunphy MPS, et al. Circulating Tumor DNA Analysis to Assess Risk of Progression after Long-term Response to PD-(L)1 Blockade in NSCLC. Clin Cancer Res. 2020;26:2849–58. This study demonstrates ctDNA could be used to indentify Minimal Residual Disease (MRD) in patients with NSCLC with long-term benefit to PD-(L) blockage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the Evolution of Non–Small-Cell Lung Cancer. N Engl J Med. 2017;376:2109–21.

    Article  CAS  PubMed  Google Scholar 

  48. Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21:560–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Romero A, Serna-Blasco R, Alfaro C, Sánchez-Herrero E, Barquín M, Turpin MC, et al. ctDNA analysis reveals different molecular patterns upon disease progression in patients treated with osimertinib. Transl Lung Cancer Res. 2020;9:532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dagogo-Jack I, Rooney M, Lin JJ, Nagy RJ, Yeap BY, Hubbeling H, et al. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin Cancer Res. 2019;25:6662–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia-Murillas I, Chopra N, Comino-Méndez I, Beaney M, Tovey H, Cutts RJ, et al. Assessment of Molecular Relapse Detection in Early-Stage Breast Cancer. JAMA Oncol. 2019;5:1473–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chin RI, Chen K, Usmani A, Chua C, Harris PK, Binkley MS, et al. Detection of Solid Tumor Molecular Residual Disease (MRD) Using Circulating Tumor DNA (ctDNA). Mol Diagn Ther. 2019;23:311–33

  53. Chae YK, Oh MS. Detection of Minimal Residual Disease Using ctDNA in Lung Cancer: Current Evidence and Future Directions. J Thorac Oncol. 2019;14:16–24.

  54. • Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–51. Profiling of post-operative plasma samples from lung cancer patients, enables recognition of adjuvant chemotherapy resistance and identify patients destined to experience recurrence of their lung cancer. ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, et al. Lung adjuvant cisplatin evaluation: A pooled analysis by the LACE collaborative group. J Clin Oncol. 2008;26:3552–9.

    Article  PubMed  Google Scholar 

  56. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC — challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15:577–86. Review about ctDNA feasibility in screening and Minor Residual Disease (MRD). Current available NGS approaches to ctDNA detection on NSCLC.

  57. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403):eaan2415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science (80-). 2018;359:926–30.

    Article  CAS  Google Scholar 

  59. Parikh AR, Van Seventer EE, Boland GM, Hartwig A, Jaimovich A, Raymond VM, et al. A plasma-only integrated genomic and epigenomic circulating tumor DNA (ctDNA) assay to inform recurrence risk in colorectal cancer (CRC). J Clin Oncol. 2019;37:3602.

    Article  Google Scholar 

  60. Wan JCM, Heider K, Gale D, Murphy S, Fisher E, Mouliere F, et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med. 2020;12(548):eaaz8084.

    Article  CAS  PubMed  Google Scholar 

  61. National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.

    Article  Google Scholar 

  62. de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N Engl J Med. 2020;382:503–13.

    Article  PubMed  Google Scholar 

  63. Ruano-Ravina A, Provencio-Pulla M, Fernández-Villar A. Lung cancer screening white paper: A slippery step forward? Eur Respir J. 2015;46:1519–20.

  64. Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369(6499):eabb9601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Montani F, Marzi MJ, Dezi F, Dama E, Carletti RM, Bonizzi G, et al. miR-Test: A Blood Test for Lung Cancer Early Detection. JNCI J Natl Cancer Inst. 2015;107:63.

    Article  CAS  Google Scholar 

  66. Wozniak MB, Scelo G, Muller DC, Mukeria A, Zaridze D, Brennan P. Circulating MicroRNAs as Non-Invasive Biomarkers for Early Detection of Non-Small-Cell Lung Cancer. Hoheisel JD, editor. PLoS One. 2015;10:e0125026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sestini S, Boeri M, Marchiano A, Pelosi G, Galeone C, Verri C, et al. Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget. 2015;6:32868–77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atocha Romero PharmD, PhD or Mariano Provencio MD, PhD.

Ethics declarations

Conflict of interest

Atocha Romero declares that she has no conflict of interest.

Roberto Serna-Blasco declares that he has no conflict of interest.

Virginia Calvo has received compensation from Roche, Bristol-Myers Squibb, MSD, and AstraZeneca for service as a consultant.

Mariano Provencio has received research funding from Bristol-Myers Squibb, Roche, and AstraZeneca; and has received compensation from Bristol-Myers Squibb, Roche, AstraZeneca, MSD, and Takeda for service as a consultant.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, A., Serna-Blasco, R., Calvo, V. et al. Use of Liquid Biopsy in the Care of Patients with Non-Small Cell Lung Cancer. Curr. Treat. Options in Oncol. 22, 86 (2021). https://doi.org/10.1007/s11864-021-00882-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00882-9

Keywords

Navigation