Skip to main content
Log in

Clinical and Novel Biomarkers in the Management of Prostate Cancer

  • Genitourinary Cancers (N Agarwal, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Clinical outcomes in prostate cancer after initial screening and treatment for organ-confined disease and in advanced stage after drug intervention can be heterogeneous. Serum prostate-specific antigen which has a modest value as a screening biomarker while widely used in practice in all subsequent stages has limitations for prognostication or prediction of drug efficacy. Recent advances in genomic sciences and the identification of the mutational landscape of organ-confined and advanced-stage disease have contributed to the development of molecular biomarker profiling in addition to serum prostate-specific antigen. Genomic biomarkers are in development for application to screening for lethal disease subtypes, monitoring of disease recurrence after initial treatments, prognostication, as well as for prediction of drug efficacy. The application of translational molecular profiling in prostate cancer has the potential to enhance clinical management and outcomes in the future. Molecular biomarkers in development in organ-confined disease include both DNA- and RNA-based candidate and pathway-based biomarkers. In advanced-stage disease, molecular biomarker profiling has emerged for identifying therapeutic targets, prediction of drug efficacy, and for prognostication of survival that includes germline single nucleotide profiling and somatic aberrations including copy number variation and mutations and RNA-based profiling. This review summarizes the current state of clinical biomarkers used in practice, their limitations, and novel molecular biomarkers being developed for several clinical endpoints in early- and late-stage cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PSA:

Prostate-specific antigen

ERSPC:

European Randomized Study for Reducing Prostate Cancer

PLCO:

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

USPTF:

US Preventive Task Force

Phi:

Prostate Health Index

PCA3:

Prostate cancer antigen 3

ETS:

E26 transformation-specific

TCGA:

The Cancer Genome Atlas

AR:

Androgen receptor

AMACR:

Alpha-methylacyl coenzyme A racemase

SNPs:

Single nucleotide polymorphisms

GS:

Gleason score

NCCN:

National Comprehensive Cancer Network

DRE:

Digital rectal examination

HNPC:

Hormone-naïve prostate cancer

ADT:

Androgen deprivation therapy

CRPC:

Castrate-resistant prostate cancer

CTCs:

Circulating tumor cells

AR-V:

Androgen receptor variant

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. Available from: http://globocan.iarc.fr. Accessed 12 May 2017. 2013.

  2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  3. Ryan CJ, Smith MR, Fizazi K, Saad F, Mulders PF, Sternberg CN, et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomized, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015;16(2):152–60.

    Article  CAS  PubMed  Google Scholar 

  4. •• Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–708. This is the first study in castration resistant prostate cancer that attempts to develop predictive biomarkers. In this study patients with DNA repair gene aberrations (germline and somatic) in BRCA2, BRCA1, ATM, FANCA and other similar genes were detected to have a higher response to olaparib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.

    Article  CAS  PubMed  Google Scholar 

  6. Beer TM, Tombal B. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371(18):1755–6.

    Article  PubMed  Google Scholar 

  7. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomized open-label trial. Lancet. 2010;376(9747):1147–54.

    Article  PubMed  CAS  Google Scholar 

  8. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  9. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  10. Pal SK, Karam JA, Chennamsetty A, Jones JO. Biomarkers in genitourinary cancers: blazing the path forward. Eur Urol. 2017;71(2):247–8.

    Article  PubMed  Google Scholar 

  11. Tchetgen MB, Oesterling JE. The effect of prostatitis, urinary retention, ejaculation, and ambulation on the serum prostate-specific antigen concentration. Urol Clin North Am. 1997;24(2):283–91.

    Article  CAS  PubMed  Google Scholar 

  12. • Auvinen A, Moss SM, Tammela TL, Taari K, Roobol MJ, Schroder FH, et al. Absolute effect of prostate cancer screening: balance of benefits and harms by center within the European Randomized Study of Prostate Cancer Screening. Clin Cancer Res. 2016;22(1):243–9. This is one of the biggest prostate cancer screening studies, which shows us the limitations one of the most widespread biomarkers

    Article  PubMed  Google Scholar 

  13. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Zappa M, Nelen V, et al. Screening and prostate cancer mortality: results of the European Randomized Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384(9959):2027–35.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pinsky PF, Prorok PC, Yu K, Kramer BS, Black A, Gohagan JK, et al. Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer. 2017;123(4):592–9.

    Article  PubMed  Google Scholar 

  15. U.S. Preventive Services Task Force. Draft recommendation statement: prostate cancer: Screening. https://www.uspreventiveservicestaskforce.org/Page/Document/draft-recommendation-statement/prostate-cancer-screening1. 2017.

  16. Sokoll LJ, Sanda MG, Feng Z, Kagan J, Mizrahi IA, Broyles DL, et al. A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [−2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev. 2010;19(5):1193–200.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Catalona WJ, Partin AW, Slawin KM, Brawer MK, Flanigan RC, Patel A, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA. 1998;279(19):1542–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lazzeri M, Haese A, Abrate A, de la Taille A, Redorta JP, McNicholas T, et al. Clinical performance of serum prostate-specific antigen isoform [−2]proPSA (p2PSA) and its derivatives, %p2PSA and the Prostate Health Index (PHI), in men with a family history of prostate cancer: results from a multicentre European study, the PROMEtheuS project. BJU Int. 2013;112(3):313–21.

    Article  CAS  PubMed  Google Scholar 

  19. Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Saeid MS, et al. Human glandular kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases. Urology. 1999;53(5):939–44.

    Article  CAS  PubMed  Google Scholar 

  20. Benchikh A, Savage C, Cronin A, Salama G, Villers A, Lilja H, et al. A panel of kallikrein markers can predict outcome of prostate biopsy following clinical work-up: an independent validation study from the European Randomized Study of Prostate Cancer screening, France. BMC Cancer. 2010;10:635.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saini S. PSA and beyond: alternative prostate cancer biomarkers. Cell Oncol (Dordr). 2016;39(2):97–106.

    Article  CAS  Google Scholar 

  22. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    CAS  PubMed  Google Scholar 

  23. Sokoll LJ, Ellis W, Lange P, Noteboom J, Elliott DJ, Deras IL, et al. A multicenter evaluation of the PCA3 molecular urine test: pre-analytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta. 2008;389(1–2):1–6.

    Article  CAS  PubMed  Google Scholar 

  24. Deras IL, Aubin SM, Blase A, Day JR, Koo S, Partin AW, et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol. 2008;179(4):1587–92.

    Article  PubMed  Google Scholar 

  25. Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52(6):1089–95.

    Article  CAS  PubMed  Google Scholar 

  26. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  CAS  PubMed  Google Scholar 

  27. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet. 2009;41(5):524–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. •• Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25. This study is a cornerstone article that identifies the mutational landscape of organ confined prostate cancer and sets the potential for molecular sub-classification of newly diagnosed disease.

    Article  CAS  Google Scholar 

  30. •• Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28. This propspectively performed study is the first prospective study that identifies the mutational landscape of castration resistant disease and provides evidence for further development of clinical biomarkers in this stage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22(3):298–305. This study genomically characterizes neuroendocrine de-differentiated prostate cnacer and provides a potential biomarker profile for this histological subtype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Desotelle J, Truong M, Ewald J, Weeratunga P, Yang B, Huang W, et al. CpG island hypermethylation frequently silences FILIP1L isoform 2 expression in prostate cancer. J Urol. 2013;189(1):329–35.

    Article  CAS  PubMed  Google Scholar 

  33. Stewart GD, Van Neste L, Delvenne P, Delree P, Delga A, McNeill SA, et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 2013;189(3):1110–6.

    Article  PubMed  Google Scholar 

  34. Robinson K, Creed J, Reguly B, Powell C, Wittock R, Klein D, et al. Accurate prediction of repeat prostate biopsy outcomes by a mitochondrial DNA deletion assay. Prostate Cancer Prostatic Dis. 2010;13(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  35. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, et al. Alpha-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2002;287(13):1662–70.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008;358(9):910–9.

    Article  CAS  PubMed  Google Scholar 

  37. Auprich M, Bjartell A, Chun FK, de la Taille A, Freedland SJ, Haese A, et al. Contemporary role of prostate cancer antigen 3 in the management of prostate cancer. Eur Urol. 2011;60(5):1045–54.

    Article  CAS  PubMed  Google Scholar 

  38. Salami SS, Schmidt F, Laxman B, Regan MM, Rickman DS, Scherr D, et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol. 2013;31(5):566–71.

    Article  CAS  PubMed  Google Scholar 

  39. Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. 2011;3(94):94ra72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanda MG, Feng Z, Howard DH, Tomlins SA, Sokoll LJ, Chan DW, et al. Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol. 2017;3(8):1085–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974;111(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  42. Pierorazio PM, Walsh PC, Partin AW, Epstein JI. Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU Int. 2013;111(5):753–60.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol. 2016;69(3):428–35.

    Article  PubMed  Google Scholar 

  44. Stamey TA, Kabalin JN. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. I. Untreated patients. J Urol. 1989;141(5):1070–5.

    Article  CAS  PubMed  Google Scholar 

  45. Stamey TA, Kabalin JN, Ferrari M. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. III. Radiation treated patients. J Urol. 1989;141(5):1084–7.

    Article  CAS  PubMed  Google Scholar 

  46. Pisansky TM, Cha SS, Earle JD, Durr ED, Kozelsky TF, Wieand HS, et al. Prostate-specific antigen as a pretherapy prognostic factor in patients treated with radiation therapy for clinically localized prostate cancer. J Clin Oncol. 1993;11(11):2158–66.

    Article  CAS  PubMed  Google Scholar 

  47. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.

    Article  PubMed  Google Scholar 

  48. Stephenson AJ, Scardino PT, Eastham JA, Bianco FJ Jr, Dotan ZA, Fearn PA, et al. Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst. 2006;98(10):715–7.

    Article  PubMed  Google Scholar 

  49. Stephenson AJ, Scardino PT, Eastham JA, Bianco FJ Jr, Dotan ZA, DiBlasio CJ, et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol. 2005;23(28):7005–12.

    Article  PubMed  Google Scholar 

  50. Shariat SF, Walz J, Roehrborn CG, Zlotta AR, Perrotte P, Suardi N, et al. External validation of a biomarker-based preoperative nomogram predicts biochemical recurrence after radical prostatectomy. J Clin Oncol. 2008;26(9):1526–31.

    Article  CAS  PubMed  Google Scholar 

  51. Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology. 2001;58(6):843–8.

    Article  CAS  PubMed  Google Scholar 

  52. Heidegger I, Klocker H, Steiner E, Skradski V, Ladurner M, Pichler R, et al. [−2]proPSA is an early marker for prostate cancer aggressiveness. Prostate Cancer Prostatic Dis. 2014;17(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  53. Guazzoni G, Lazzeri M, Nava L, Lughezzani G, Larcher A, Scattoni V, et al. Preoperative prostate-specific antigen isoform p2PSA and its derivatives, %p2PSA and prostate health index, predict pathologic outcomes in patients undergoing radical prostatectomy for prostate cancer. Eur Urol. 2012;61(3):455–66.

    Article  CAS  PubMed  Google Scholar 

  54. Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP, et al. Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin Cancer Res. 2015;21(11):2591–600.

    Article  CAS  PubMed  Google Scholar 

  55. Bostrom PJ, Bjartell AS, Catto JW, Eggener SE, Lilja H, Loeb S, et al. Genomic predictors of outcome in prostate cancer. Eur Urol. 2015;68(6):1033–44.

    Article  CAS  PubMed  Google Scholar 

  56. Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomark Prev. 2012;21(9):1497–509.

    Article  Google Scholar 

  57. Hagglof C, Hammarsten P, Stromvall K, Egevad L, Josefsson A, Stattin P, et al. TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS ONE. 2014;9(2):e86824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O, et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol. 2008;21(12):1451–60.

    Article  CAS  PubMed  Google Scholar 

  59. Krohn A, Diedler T, Burkhardt L, Mayer PS, De Silva C, Meyer-Kornblum M, et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol. 2012;181(2):401–12.

    Article  CAS  PubMed  Google Scholar 

  60. Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D, et al. Molecular characterization of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102(4):678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Agalliu I, Karlins E, Kwon EM, Iwasaki LM, Diamond A, Ostrander EA, et al. Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer. 2007;97(6):826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hart SN, Ellingson MS, Schahl K, Vedell PT, Carlson RE, Sinnwell JP, et al. Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open. 2016;6(4):e010332.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tryggvadottir L, Vidarsdottir L, Thorgeirsson T, Jonasson JG, Olafsdottir EJ, Olafsdottir GH, et al. Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99(12):929–35.

    Article  CAS  PubMed  Google Scholar 

  65. Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 2014;66(3):550–60.

    Article  PubMed  Google Scholar 

  66. Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J, et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol. 2015;68(1):123–31.

    Article  PubMed  Google Scholar 

  67. Merola R, Tomao L, Antenucci A, Sperduti I, Sentinelli S, Masi S, et al. PCA3 in prostate cancer and tumor aggressiveness detection on 407 high-risk patients: a National Cancer Institute experience. J Exp Clin Cancer Res. 2015;34:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wei W, Leng J, Shao H, Wang W. High PCA3 scores in urine correlate with poor-prognosis factors in prostate cancer patients. Int J Clin Exp Med. 2015;8(9):16,606–12.

    CAS  Google Scholar 

  69. Erho N, Crisan A, Vergara IA, Mitra AP, Ghadessi M, Buerki C, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE. 2013;8(6):e66855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Karnes RJ, Bergstralh EJ, Davicioni E, Ghadessi M, Buerki C, Mitra AP, et al. Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk patient population. J Urol. 2013;190(6):2047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 2011;12(3):245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cuzick J, Stone S, Fisher G, Yang ZH, North BV, Berney DM, et al. Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br J Cancer. 2015;113(3):382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cuzick J, Berney DM, Fisher G, Mesher D, Moller H, Reid JE, et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer. 2012;106(6):1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Freedland SJ, Gerber L, Reid J, Welbourn W, Tikishvili E, Park J, et al. Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86(5):848–53.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cooperberg MR, Simko JP, Cowan JE, Reid JE, Djalilvand A, Bhatnagar S, et al. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol. 2013;31(11):1428–34.

    Article  CAS  PubMed  Google Scholar 

  76. Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, Stoppler H, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 2011;71(2):550–60.

    Article  CAS  PubMed  Google Scholar 

  77. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31(8):978–91.

    Article  CAS  PubMed  Google Scholar 

  78. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126(5):1166–76.

    CAS  PubMed  Google Scholar 

  79. Walsh PC. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. J Urol. 1997;158(4):1623–4.

    Article  CAS  PubMed  Google Scholar 

  80. Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373(8):737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017.

  82. Wang X, Harshman LC, Xie W, Nakabayashi M, Qu F, Pomerantz MM, et al. Association of SLCO2B1 genotypes with time to progression and overall survival in patients receiving androgen-deprivation therapy for prostate cancer. J Clin Oncol. 2016;34(4):352–9.

    Article  PubMed  CAS  Google Scholar 

  83. Kohli M, Riska SM, Mahoney DW, Chai HS, Hillman DW, Rider DN, et al. Germline predictors of androgen deprivation therapy response in advanced prostate cancer. Mayo Clin Proc. 2012;87(3):240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hearn JWD, AbuAli G, Reichard CA, Reddy CA, Magi-Galluzzi C, Chang KH, et al. HSD3B1 and resistance to androgen-deprivation therapy in prostate cancer: a retrospective, multicohort study. Lancet Oncol. 2016;17(10):1435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hofman V, Ilie MI, Long E, Selva E, Bonnetaud C, Molina T, et al. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: comparison of the efficacy of the cell search assay and the isolation by size of epithelial tumor cell method. Int J Cancer. 2011;129(7):1651–60.

    Article  CAS  PubMed  Google Scholar 

  86. Goldkorn A, Ely B, Quinn DI, Tangen CM, Fink LM, Xu T, et al. Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol. 2014;32(11):1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vogelzang NJ, Fizazi K, Burke JM, De Wit R, Bellmunt J, Hutson TE, et al. Circulating tumor cells in a phase 3 study of docetaxel and prednisone with or without lenalidomide in metastatic castration-resistant prostate cancer. Eur Urol. 2017;71(2):168–71.

    Article  CAS  PubMed  Google Scholar 

  88. Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Lieberman R, Pan J, Zhang Q, Du M, Zhang P, et al. miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol Cancer. 2016;15(1):70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Cao S, Zhan Y, Dong Y. Emerging data on androgen receptor splice variants in prostate cancer. Endocr Relat Cancer. 2016;23(12):T199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. • Kohli M, Ho Y, Hillman DW, Van Etten JL, Henzler C, Yang R, et al. Androgen Receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin Cancer Res. 2017;23(16):4704–15. This study identifies candidate predictive biomarkers of resistance to abirateronce acetate-prednisone in truncated Androgen receptor variants and re-annotates the Androgen receptor gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Romanel A, Gasi Tandefelt D, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 2015;7(312):312re10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Conteduca V, Wetterskog D, Sharabiani MTA, Grande E, Fernandez-Perez MP, Jayaram A, et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol. 2017;28(7):1508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. •• Wang L, Dehm SM, Hillman DW, Sicotte H, Tan W, Gormley M, et al. A prospective genome-wide study of prostate cancer metastases reveals association of wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate-prednisone. Ann Oncol. 2017. This prospective trial identifies molecular pathways of primary resistance to abiraterone acettae-prednisone in castration resistant state.

  96. Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1(6):487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Berruti A, Mosca A, Tucci M, Terrone C, Torta M, Tarabuzzi R, et al. Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocr Relat Cancer. 2005;12(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  98. Heck MM, Thaler MA, Schmid SC, Seitz AK, Tauber R, Kubler H, et al. Chromogranin A and neurone-specific enolase serum levels as predictors of treatment outcome in patients with metastatic castration-resistant prostate cancer undergoing abiraterone therapy. BJU Int. 2017;119(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  99. Crawford ED, Rove KO, Trabulsi EJ, Qian J, Drewnowska KP, Kaminetsky JC, et al. Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1962 cases. J Urol. 2012;188(5):1726–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kohli MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding Support

This work was supported by a R01-CA21209 NCI grant and a Department of Defense W81XWH-15-1-0634 award to M.K.

Additional information

The article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanhueza, C., Kohli, M. Clinical and Novel Biomarkers in the Management of Prostate Cancer. Curr. Treat. Options in Oncol. 19, 8 (2018). https://doi.org/10.1007/s11864-018-0527-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-018-0527-z

Keywords

Navigation