Skip to main content

Advertisement

Log in

Current Status of Signal Transduction Modulators in the Treatment of Gynecologic Malignancies

  • Gynecologic Tumors
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The introduction of platinum and paclitaxel had a pronounced effect in the prognosis and management of gynecological tumors. Preliminary results suggest that the use of signal transduction modulators, particularly inhibitors of angiogenesis has significant activity in recurrent ovarian cancer. Monoclonal antibodies against VEGF, such as bevacizumab, can be considered in the treatment of recurrent disease. Currently the role of bevacizumab as frontline therapy, in combination with cytotoxic chemotherapy, is being investigated in randomized phase III studies. It is expected that other signal transduction modulators will also have substantial activity in gynecological tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, has been highlighted as: •Of importance ••Of major importance

  1. Jemal A, et al. Cancer statistics, 2007. CA Cancer J Clin 2007; 57:43.

    Article  PubMed  Google Scholar 

  2. Green JA, Kirwan JM, Tierney JF, et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet 2001; 358: 781–786.

    Article  CAS  PubMed  Google Scholar 

  3. McGuire WP, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and IV ovarian cancer. NEJM 1996; 334: 1–6.

    Article  CAS  PubMed  Google Scholar 

  4. •Cannistra SA. Cancer of the ovary. NEJM 2004; 351:2519–2529.

    Article  CAS  PubMed  Google Scholar 

  5. Bookman MA, et al.: GOG 0182-ICON5: 5 arm phase III randomized trial of paclitaxel and carboplatin vs combinations with gemcitabine, PEG-liposomal doxorubicin, or topotecan in patients with advanced-stage epithelial ovarian or primary peritoneal carcinoma. JCO 2006; 18s: abst 5002.

    Google Scholar 

  6. Lichtenbeld HC, et al. Tumor angiogenesis: pathophysiology and clinical significance. Neth J Med 1996; 49: 42–51.

    Article  CAS  PubMed  Google Scholar 

  7. Yoneda J, et al. Expression of angiogenesis related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 1998; 90: 447–454.

    Article  CAS  PubMed  Google Scholar 

  8. Paley PJ, et al. Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 1997; 80: 98–106.

    Article  CAS  PubMed  Google Scholar 

  9. Abulafia O, et al. Angiogenesis in primary and metastatic ovarian epithelial carcinoma. Am J Obstet Gynecol 1997; 177: 541–547.

    Article  CAS  PubMed  Google Scholar 

  10. Berchuck A, et al. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. Am J Obstet Gynecol 1991; 164: 669–674.

    CAS  PubMed  Google Scholar 

  11. Verri E, et al. HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Oncology 2005; 68: 154–161.

    Article  CAS  PubMed  Google Scholar 

  12. Hurwitz H, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. NEJM 2004; 350:2335–2342.

    Article  CAS  PubMed  Google Scholar 

  13. Cunningham D, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. NEJM 2004; 351:337–345.

    Article  CAS  PubMed  Google Scholar 

  14. Shepherd FA, et al. Erlotinib in previously treated non-small cell lung cancer. NEJM 2005; 353:123–132.

    Article  CAS  PubMed  Google Scholar 

  15. Hunter T. Signaling-2000 and beyond. Cell 2000; 100:113–127.

    Article  CAS  PubMed  Google Scholar 

  16. Blume-Jensen P, et al. Oncogenic kinase signaling. Nature 2001; 411:355–365.

    Article  CAS  PubMed  Google Scholar 

  17. Risau W, et al. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 1988; 125:441–450.

    Article  CAS  PubMed  Google Scholar 

  18. •Ferrara N: Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001; 280:C1358–C1366.

    CAS  PubMed  Google Scholar 

  19. ••Martin L, et al. Novel approaches in advancing the treatment of epithelial ovarian cancer:the role of angiogenesis inhibition. JCO 2007; 25:2894–2901.

    Article  CAS  Google Scholar 

  20. ••Ramakrishnan S, et al. Angiogenesis in normal and neoplastic ovaries. Angiogenesis 2005; 8:169–182.

    Article  CAS  PubMed  Google Scholar 

  21. Bergers G, et al. Tumorigenesis and the angiogenic switch. Nat Rev, Cancer 2003; 3:401–410.

    Article  CAS  PubMed  Google Scholar 

  22. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med 2001; 7:987–989.

    Article  CAS  PubMed  Google Scholar 

  23. Jain RK. Normalization of tumor vasculature: An emerging concept in anti-angiogenic therapy. Science 2005; 307:58–62.

    Article  CAS  PubMed  Google Scholar 

  24. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. JCO 2002; 20:4368–4380.

    Article  CAS  Google Scholar 

  25. Abu-Jawdeh GM, et al. Strong expression of vascular permeability factor and its receptors in ovarian borderline and malignant neoplasm. Lab Invest 1996; 74:1105–1115.

    CAS  PubMed  Google Scholar 

  26. Raspollini MR, et al. Prognostic significance of microvessel density and vascular endothelial growth factor expression in advanced ovarian serous carcinoma. Int J Gynecol Cancer 2004; 14:815–823.

    Article  CAS  PubMed  Google Scholar 

  27. •Ferrara N, et al. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999; 5:1359–1364.

    Article  CAS  PubMed  Google Scholar 

  28. Tong RT, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64:3731–3736.

    Article  CAS  PubMed  Google Scholar 

  29. Wildiers H, et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer 2003; 88:1979–1986.

    Article  CAS  PubMed  Google Scholar 

  30. Belotti D, et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 2003; 63:5224–5229.

    CAS  PubMed  Google Scholar 

  31. Xu L, et al. Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases. Int J Oncol 2000; 16:445–454.

    CAS  PubMed  Google Scholar 

  32. ••Burger RA, Sill MW, Monk BJ, Greer BE. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: A Gynecologic Oncology Group study. J Clin Oncol 2007; 25:5165–5171.

    Article  CAS  PubMed  Google Scholar 

  33. ••Cannistra SA, Matulonis UA, Penson RT, et al. Bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007; 25:5180–5186.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia AA, Hirte H, Fleming G, et al.: Phase II clinical trial of bevacizumab and low dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago and PMH Phase II Consortia. J Clin Oncol 2008, 26:76–82

    Google Scholar 

  35. Byrne AT, et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res 2003; 9:5721–5728.

    CAS  PubMed  Google Scholar 

  36. Holash J, et al. VEGF-trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002; 99:11393–11398.

    Article  CAS  PubMed  Google Scholar 

  37. Dupont J, et al. Phase I and pharmacokinetic study of VEGF Trap administered subcutaneously to patients with advanced solid malignancies. JCO 2004; 22:14s (suppl; abstr 3009).

    Google Scholar 

  38. Hu L, et al. Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin Caner Res 2005; 11:6966–6971.

    Article  CAS  Google Scholar 

  39. Tew WP, Colombo N, Ray-Coquard I, et al.: VEGF-Trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No 18S (June 20 Supplement), 2007:5508

  40. Kumar R, et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 2007; 6(7):2012–2021.

    Article  CAS  PubMed  Google Scholar 

  41. Friedlander M, Hancock KC, Benigno B, et al.: Pazopanib (GW786034) is active in women with advanced epithelial ovarian, fallopian tube and peritoneal cancers: initial results of a phase II study. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No 18S (June 20 Supplement), 2007:5561

  42. Schroder W, et al. A phase IB, open label, safety and pharmacokinetic study of escalating doses of PTK787/ZK222584 in combination with paclitaxel and carboplatin in patients with stage IIC to IV epithelial ovarian cancer. JCO 2005; 23:465s (suppl; abstr 5042).

    Google Scholar 

  43. Rosen L, Kurzrock R, Mulay M, et al. Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors. J Clin Oncol 2007; 25:2369–2376.

    Article  CAS  PubMed  Google Scholar 

  44. Rosen L, et al. Phase I trial of SU11248, a novel tyrosine kinase inhibitor in advanced solid tumors. Proc Am Soc Clin Oncol 2003; 22:191 (abstr 765).

    Google Scholar 

  45. Yarden Y, et al. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001; 2:127–137.

    Article  CAS  PubMed  Google Scholar 

  46. Laughner E, et al. HER2 signaling increases the rate of hypoxia-inducible factor 1alpha synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21:3995–4004.

    Article  CAS  PubMed  Google Scholar 

  47. Pore N, et al. PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res 2003; 63:236–241.

    CAS  PubMed  Google Scholar 

  48. Maity A, et al. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3’-kinase and distinct from that induced by hypoxia. Cancer Res 2000; 60:5879–5886.

    CAS  PubMed  Google Scholar 

  49. Kirschbaum MH, et al. The Erb/HER family of receptor tyrosine kinases: A potential target for chemoprevention of epithelial neoplasms. J Cell Biochem 2000; 34:52–60.

    Article  CAS  Google Scholar 

  50. Campiglio M, et al. Characteristics of EGFR family-mediated HRG signals in human ovarian cancer. J Cell Biochem 1999; 73:522–532.

    CAS  PubMed  Google Scholar 

  51. •Gross ME, et al. Targeting the HER-kinase axis in cancer. Semin Oncol 2004; 31:9–20.

    Article  CAS  PubMed  Google Scholar 

  52. Klapper LN, et al. Biochemical and clinical implications of Erb/HER signaling network of growth factor receptors. Adv Cancer Res 2000; 77:25–79.

    Article  CAS  PubMed  Google Scholar 

  53. Bartlett JM, et al. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996; 73:301–306.

    CAS  PubMed  Google Scholar 

  54. Fischer-Colbrie J, et al. EGFR and steroid receptors in ovarian cancer: Comparison with prognostic parameters and outcome of patients. Anticancer Res 1997; 17:613–619.

    CAS  PubMed  Google Scholar 

  55. Schilder RJ, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a GOG study. Clin Cancer Res 2005; 11:5539–5548.

    Article  CAS  PubMed  Google Scholar 

  56. Basegla J, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. JCO 2000; 18:904–914.

    Google Scholar 

  57. Aghajanian C, et al. A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced stage ovarian, primary peritoneal, and fallopian tube cancer. JCO 2005; 23:466s (suppl; abst 5047).

    Article  CAS  Google Scholar 

  58. Posadas EM, et al. A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer. Cancer 2007; 109:1323–1330.

    Article  CAS  PubMed  Google Scholar 

  59. •Crijns AP, et al. Molecular prognostic markers in ovarian cancer: toward patient-tailored therapy. Int J Gynecol Cancer 2006; 16:152–165.

    Article  PubMed  Google Scholar 

  60. Gordon AN, et al. Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer 2005; 15:785–792.

    Article  CAS  PubMed  Google Scholar 

  61. Wen XF, et al. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: Implications for HER2-targeted antibody therapy. Oncogene 2006; 25:6986–6996.

    Article  CAS  PubMed  Google Scholar 

  62. •Bookman MA, et al. Evaluation of monoclonal humanized antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: A phase II trial of the GOG. JCO 2003; 21:283–290.

    Article  CAS  Google Scholar 

  63. Cobleigh MA, Vogel CL, Tripathy D, et al: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999 17:2639–2648.

    CAS  PubMed  Google Scholar 

  64. Baselga J, Tripathy D, Mendelsohn J, et al: Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14:737–744.

    CAS  PubMed  Google Scholar 

  65. Cobleigh MA, Langmuir VK, Sledge GW, et al. A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 2003; 30(5 Suppl 16):117–124.

    Article  CAS  PubMed  Google Scholar 

  66. Adams CW, et al. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 2006; 55:717–727.

    Article  CAS  PubMed  Google Scholar 

  67. Agus DB, et al. Targeting ligand activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2:127–137.

    Article  CAS  PubMed  Google Scholar 

  68. Gordon MS, et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. JCO 2006; 24:4324–4332.

    Article  CAS  Google Scholar 

  69. Makhija S, Glenn D, Ueland F, et al.: Results from a phase II randomized, placebo-controlled, double-blind trial suggest improved PFS with the addition of pertuzumab to gemcitabine in patients with platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No 18S (June 20 Supplement), 2007:5507

  70. Dy GK, et al. A phase I trial of farnesyl protein transferase inhibitor, BMS-214662, in combination with paclitaxel and carboplatin in patients with advanced cancer. Clin Cancer Res 2005; 11:1877–1883.

    Article  CAS  PubMed  Google Scholar 

  71. Beeram M, et al. Raf: a strategic target for therapeutic development against cancer. JCO 2005; 11:1877–1883.

    Google Scholar 

  72. Welch S, et al. Phase II study of sorafenib (BAY-43-9006) in combination with gemcitabine in recurrent epithelial ovarian cancer: A PMH phase II consortium trial. JCO 2006; 24:276s (suppl; abst 5084).

    Google Scholar 

  73. Huang S, et al. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 2003; 3:371–377.

    Article  CAS  PubMed  Google Scholar 

  74. Inoki K, et al. Dysregulation of the TSC-mTOR pathway in human disease. Nat Gen 2005; 37:19–24.

    Article  CAS  Google Scholar 

  75. Oza AM, Elit L, Biagi J, et al.: Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer—NCIC IND 160. J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I. Vol 24, No 18S (June 20 Supplement), 2006:3003

  76. Colombo N, S. McMeekin, P. Schwartz, et al.: A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No 18S (June 20 Supplement), 2007:5516

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustin A. Garcia MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashouri, S., Garcia, A.A. Current Status of Signal Transduction Modulators in the Treatment of Gynecologic Malignancies. Curr. Treat. Options in Oncol. 8, 383–392 (2007). https://doi.org/10.1007/s11864-007-0051-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-007-0051-z

Keywords

Navigation