Skip to main content
Log in

A Branch and Bound-Based Algorithm for the Weak Linear Bilevel Programming Problems

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Most real-world optimization problems are hierarchical involving non-cooperative objectives. Many of these problems can be formulated in terms of the first (upper level) objective function being minimized over the solution set mapping of the second (lower level) optimization problem. Often the upper level decision maker is risk-averse. The resulting class of problem is named weak bilevel programming problem. This paper presents a new algorithm which embeds a penalty function method into a branch and bound algorithm to deal with a weak linear bilevel programming problem. An example illustrates the feasibility of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bard J F. Practical Bilevel Optimization: Algorithms and Applications [M]. Dordrecht: Kluwer Academic, 1998.

    Book  Google Scholar 

  2. Dempe S. Foundations of Bilevel Programming, Nonconvex Optimization and Its Applications Series [M]. Dordrecht: Kluwer Academic, 2002.

    Google Scholar 

  3. Zhang G, Lu J, Gao Y. Multi–Level Decision Making: Models, Methods and Applications [M]. Berlin: Springer–Verlag, 2015.

    Book  Google Scholar 

  4. Dempe S. Annottated bibliography on bilevel programming and mathematical problems with equilibrium constraints [J]. Optimization, 2003, 52: 333–359.

    Article  Google Scholar 

  5. Colson B, Marcotte P, Savard G. An overview of bilevel optimization [J]. Annals of Operations Research, 2007, 153: 235–256.

    Article  Google Scholar 

  6. Lu J, Han J, Hu Y, et al. Multilevel decision–making: A survey [J]. Information Sciences, 2016, 346: 463–487.

    Article  Google Scholar 

  7. Liu J, Fan Y, Chen Z, et al. Pessimistic bilevel optimization: A survey [J]. International Journal of Computational Intelligence Systems, 2018, 11: 725–736.

    Article  Google Scholar 

  8. Loridan P, Morgan J. Weak via strong Stackelberg problem: New results [J]. Journal of Global Optimization, 1996, 8: 263–287.

    Article  Google Scholar 

  9. Wiesemann W, Tsoukalas A, Kleniati P, et al. Pessimistic bi–level optimization [J]. SIAM Journal on Optimization, 2013, 23: 353–380.

    Article  Google Scholar 

  10. Aboussoror A, Mansouri A. Existence of solutions to weaknonlinear bilevel problems via MinSup and d.c. problems. RAIRO Operations Research, 2008, 42: 87–103.

    Article  Google Scholar 

  11. Aboussoror A, Adly S, Jalby V. Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems [J]. Journal of Industrial and Management Optimization, 2011, 7: 559–571.

    Article  Google Scholar 

  12. Lignola M B, Morgan J. Topological existence and stability for Stackelberg problems [J]. Journal of Optimization Theory and Applications, 1995, 84: 145–169.

    Article  Google Scholar 

  13. Loridan P, Morgan J. New results on approximate solutions in two–level optimization [J]. Optimization, 1989, 20(6): 819–836.

    Article  Google Scholar 

  14. Lucchetti R, Mignanego F, Pieri G. Existence theorems of equilibrium points in Stackelberg games with constraints [J]. Optimization, 1987, 18: 857–866.

    Article  Google Scholar 

  15. Lignola M B, Morgan J. Inner regularizations and viscosity solutions for pessimistic bilevel optimization problems [J]. Journal of Optimization Theory and Applications, 2017, 173(1): 183–202.

    Article  Google Scholar 

  16. Dassanayaka S. Methods of Variational Analysis in Pessimistic Bilevel Programming [D]. Detroit: Wayne State University, 2010.

    Google Scholar 

  17. Dempe S, Mordukhovich B S, Zemkoho A B. Necessary optimality conditions in pessimistic bilevel programming [J]. Optimization, 2014, 63: 505–533.

    Article  Google Scholar 

  18. Cervinka M, Matonoha C, Outrata J V. On the computation of relaxed pessimistic solutions to MPECs[J]. Optimization Methods and Software, 2013, 28: 186–206.

    Article  Google Scholar 

  19. Aboussoror A, Mansouri A. Weak linear bilevel programming problems: Existence of solutions via a penalty method [J]. Journal of Mathematical Analysis and Applications, 2005, 304: 399–408.

    Article  Google Scholar 

  20. Zheng Y, Wan Z P, Sun K, et al. An exact penalty method for weak linear bilevel programming problem [J]. Journal of Applied Mathematics and Computing, 2013, 42: 41–49.

    Article  Google Scholar 

  21. Zheng Y, Fang D, Wan Z P. A solution approach to the weak linear bilevel programming problems [J]. Optimization, 2016, 7: 1437–1449.

    Article  Google Scholar 

  22. Zheng Y, Zhuo X, Chen J. Maximum entropy approach for solving pessimistic bilevel programming problems [J]. Wuhan University Journal of Natural Sciences, 2017, 22(1): 63–67.

    Article  Google Scholar 

  23. Zeng B. Easier than We Thought—A Practical Scheme to Compute Pessimistic Bilevel Optimization Problem[R]. Pittsburgh: University of Pittsburgh, 2015.

    Book  Google Scholar 

  24. Fortuny–Amat J, McCarl B. A representation and economic interpretation of a two–level programming problem [J]. Journal of the Operational Research Society, 1981, 32(9): 783–792.

    Article  Google Scholar 

  25. Bard J F, Moore J T. A branch and bound algorithm for the bilevel programming problem [J]. SIAM Journal on Scientific and Statistical Computing, 1990, 11: 281–292.

    Article  Google Scholar 

  26. Hansen P, Jaumard B, Savard G. New branch–and–bound rules for linear bilevel programming [J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13: 1194–1217.

    Article  Google Scholar 

  27. Liu G S, Zhang J Z. A new branch and bound algorithm for solving quadratic programs with linear complementarity constraints [J]. Journal of Computational and Applied Mathematics, 2002, 146: 77–87.

    Article  Google Scholar 

  28. Farvaresh H, Sepehri M M. A branch and bound algorithm for bi–level discrete network design problem [J]. Networks and Spatial Economics, 2013, 13: 67–106.

    Article  Google Scholar 

  29. Shim Y, Fodstad M, Gabriel S A, et al. A branch–and–bound method for discretely–constrained mathematical programs with equilibrium constraints [J]. Annals of Operations Research, 2013, 210: 5–31.

    Article  Google Scholar 

  30. Tawarmalani M, Sahinidis N V. A polyhedral branchand–cut approach to global optimization [J]. Mathematical Programming, 2005, 103(2): 225–249.

    Article  Google Scholar 

  31. Wan Z P, Wang G M, Sun B. A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems [J]. Swarm and Evolutionary Computation, 2013, 8: 26–32.

    Article  Google Scholar 

  32. Wan Z P, Mao L, Wang G M. Estimation of distribution algorithm for a class of nonlinear bilevel programming problems [J]. Information Sciences, 2014, 256: 184–196.

    Article  Google Scholar 

  33. Liu G S, Xu S, Han J. A trust region algorithm for solving bilevel programming problems [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29: 491–498.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Hong.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (11501233), and the Natural Science Research Project of Universities of Anhui Province (KJ2018A0390)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hong, Y. & Zheng, Y. A Branch and Bound-Based Algorithm for the Weak Linear Bilevel Programming Problems. Wuhan Univ. J. Nat. Sci. 23, 480–486 (2018). https://doi.org/10.1007/s11859-018-1352-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-018-1352-8

Key words

CLC number

Navigation