Skip to main content
Log in

Apoptotic signal pathways and regulatory mechanisms of cancer cells induced by IL-24

  • Review
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The melanoma differentiation-associated gene-7(mda-7), IL-24, has the specific functions that induce cancer cell apoptosis without doing harm to normal cells. We systematically review the apoptotic signal pathways and their regulatory mechanisms induced by Ad.IL-24 and IL-24 in diverse cancer cells. IL-24 can participate in varied signal transduction pathways, including JAK, p38 MAPK, Wnt/β-catenin, JNK, ER stress and mitochondria-associated signal pathways. And we review five proteins interacting with IL-24, including Bip/GRP78, S1R, PKR, Beclin1 and soluble clusterin, which are relative to the tumor-specific effect of IL-24. It is speculated that ER stress, G-protein pathways and MAPK signal pathways may be the primary upstream effectors which activate the sequential downstream mediators resulting in apoptosis induced by IL-24 in tumor cells. Experimental results also show that IL-24 sensitizes cancer cells and indirectly promotes apoptosis rather than functions as a direct apoptosis inducer itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang H, Lin J J, Su Z Z, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression [J]. Oncogene, 1995, 11(12): 2477–2486.

    CAS  PubMed  Google Scholar 

  2. Lee K M, Kang H A, Park M, et al. Interleukin-24 attenuates beta-glycerophosphate-induced calcification of vascular smooth muscle cells by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/betacatenin pathway [J]. Biochem Biophys Res Commun, 2012, 428(1): 50–55.

    Article  CAS  PubMed  Google Scholar 

  3. Dent P, Yacoub A, Hamed H A, et al. The development of mda-7/IL-24 as a cancer therapeutic [J]. Pharmacol Ther, 2010, 128(2): 375–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eulitt P J, Park M A, Hossein H, et al. Enhancing mda-7/IL-24 therapy in renal carcinoma cells by inhibiting multiple protective signaling pathways using sorafenib and by ad.5/3 gene delivery [J]. Cancer Biology & Therapy, 2014, 10(12): 1290–1305.

    Article  CAS  Google Scholar 

  5. Kim J S, Yu S K, Lee M H, et al. Microrna-205 directly regulates the tumor suppressor, interleukin-24, in human KB oral cancer cells [J]. Mol Cells, 2013, 35(1): 17–24.

    Article  CAS  PubMed  Google Scholar 

  6. Dash R, Bhoopathi P, Das S K, et al. Novel mechanism of mda-7/IL-24 cancer-specific apoptosis through sari induction [J]. Cancer Res, 2014, 74(2): 563–574.

    Article  CAS  PubMed  Google Scholar 

  7. Sarkar D, Dent P, Curiel D T, et al. Acquired and innate resistance to the cancer-specific apoptosis-inducing cytokine, mda-7/IL-24: Not insurmountable therapeutic problems [J]. Cancer Biol Ther, 2008, 7(1): 109–112.

    Article  CAS  PubMed  Google Scholar 

  8. Hingtgen S, Kasmieh R, Elbayly E, et al. A first-generation multi-functional cytokine for simultaneous optical tracking and tumor therapy [J]. PLoS One, 2012, 7(7): e40234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sauane M, Su Z Z, Dash R, et al. Ceramide plays a prominent role in mda-7/IL-24-induced cancer-specific apoptosis [J]. J Cell Physiol, 2010, 222(3): 546–555.

    CAS  PubMed  Google Scholar 

  10. Kreis S, Philippidou D, Margue C, et al. Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells [J]. PLoS One, 2007, 2(12): e1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang E Y, Madireddi M T, Gopalkrishnan R V, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties [J]. Oncogene, 2001, 20(48): 7051–7063.

    Article  CAS  PubMed  Google Scholar 

  12. Wang M, Tan Z, Zhang R, et al. Interleukin 24 (mda-7/ mob-5) signals through two heterodimeric receptors, IL-22r1/IL-20r2 and IL-20r1/IL-20r2 [J]. J Biol Chem, 2002, 277(9): 7341–7347.

    Article  CAS  PubMed  Google Scholar 

  13. Sauane M, Gopalkrishnan R V, Sarkar D, et al. Mda-7/IL-24: Novel cancer growth suppressing and apoptosis inducing cytokine [J]. Cytokine Growth Factor Rev, 2003, 14(1): 35–51.

    Article  CAS  PubMed  Google Scholar 

  14. Sauane M, Gupta P, Lebedeva I V, et al. N-glycosylation of mda-7/IL-24 is dispensable for tumor cell-specific apoptosis and “bystander” antitumor activity [J]. Cancer Res, 2006, 66(24): 11869–11877.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta P, Walter M R, Su Z Z, et al. BIP/GRP78 is an intracellular target for mda-7/IL-24 induction of cancerspecific apoptosis [J]. Cancer Res, 2006, 66(16): 8182–8191.

    Article  CAS  PubMed  Google Scholar 

  16. Dumoutier L, Leemans C, Lejeune D, et al. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types [J]. J Immunol, 2001, 167(7): 3545–3549.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu H, Yang Z B. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines [J]. Hepatobiliary Pancreat Dis Int, 2009, 8(4): 402–406.

    CAS  PubMed  Google Scholar 

  18. Yang Y J, Chen D Z, Li L X, et al. Targeted IL-24 gene therapy inhibits cancer recurrence after liver tumor resection by inducing tumor cell apoptosis in nude mice [J]. Hepatobiliary Pancreat Dis Int, 2009, 8(2): 174–178.

    CAS  PubMed  Google Scholar 

  19. Bhutia S K, Das S K, Azab B, et al. Targeting breast cancer-initiating/stem cells with melanoma differentiationassociated gene-7/interleukin-24 [J]. Int J Cancer, 2013, 133(11): 2726–2736.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Park M A, Walker T, Martin A P, et al. Mda-7/IL-24-induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK-dependent mechanism [J]. Mol Cancer Ther, 2009, 8(5): 1280–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yacoub A, Park M A, Gupta P, et al. Caspase-, cathepsin-, and PERK-dependent regulation of mda-7/IL-24-induced cell killing in primary human glioma cells [J]. Mol Cancer Ther, 2008, 7(2): 297–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sauane M, Gopalkrishnan R V, Choo H T, et al. Mechanistic aspects of mda-7/IL-24 cancer cell selectivity analysed via a bacterial fusion protein [J]. Oncogene, 2004, 23(46): 7679–7690.

    Article  CAS  PubMed  Google Scholar 

  23. Chada S, Mhashilkar A M, Ramesh R, et al. Bystander activity of ad-mda7: Human mda-7 protein kills melanoma cells via an IL-20 receptor-dependent but stat3-independent mechanism [J]. Mol Ther, 2004, 10(6): 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  24. Parrish-Novak J, Xu W, Brender T, et al. Interleukins 19, 20 and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions [J]. J Biol Chem, 2002, 277(49): 47517–47523.

    Article  CAS  PubMed  Google Scholar 

  25. Inoue S, Shanker M, Miyahara R, et al. Mda-7/IL-24-based cancer gene therapy: Translation from the laboratory to the clinic [J]. Curr Gene Ther, 2006, 6(1): 73–91.

    Article  CAS  PubMed  Google Scholar 

  26. Chada S, Bocangel D, Ramesh R, et al. Mda-7/IL-24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways: Identification of IL-20 receptormediated bystander activity against pancreatic cancer [J]. Mol Ther, 2005, 11(5): 724–733.

    Article  CAS  PubMed  Google Scholar 

  27. Sieger K A, Mhashilkar A M, Stewart A, et al. The tumor suppressor activity of mda-7/IL-24 is mediated by intracellular protein expression in nsclc cells [J]. Mol Ther, 2004, 9(3): 355–367.

    Article  CAS  PubMed  Google Scholar 

  28. Sahoo A, Lee C G, Jash A, et al. Stat 6 and c-jun mediate Th2 cell-specific IL-24 gene expression [J]. J Immunol, 2011, 186(7): 4098–4109.

    Article  CAS  PubMed  Google Scholar 

  29. Shefler I, Pasmanik-Chor M, Kidron D, et al. T cell-derived microvesicles induce mast cell production of IL-24: Relevance to inflammatory skin diseases [J]. J Allergy Clin Immunol, 2014, 133(1): 1–3.

    Article  CAS  Google Scholar 

  30. Sarkar D, Lebedeva I V, Gupta P, et al. Melanoma differentiation associated gene-7 (mda-7)/ IL-24: A “magic bullet” for cancer therapy? [J]. Expert Opin Biol Ther, 2007, 7(5): 577–586.

    Article  CAS  PubMed  Google Scholar 

  31. Weiss R, Sachet M, Zinngrebe J, et al. IL-24 sensitizes tumor cells to TLR3-mediated apoptosis [J]. Cell Death Differ, 2013, 20(6): 823–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sauane M, Gopalkrishnan R V, Lebedeva I, et al. Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways [J]. J Cell Physiol, 2003, 196(2): 334–345.

    Article  CAS  PubMed  Google Scholar 

  33. Ekmekcioglu S, Ellerhorst J A, Mumm J B, et al. Negative association of melanoma differentiation-associated gene (mda-7) and inducible nitric oxide synthase (INOS) in human melanoma: Mda-7 regulates INOS expression in melanoma cells [J]. Mol Cancer Ther, 2003, 2(1): 9–17.

    Article  CAS  PubMed  Google Scholar 

  34. Mamane Y, Heylbroeck C, Genin P, et al. Interferon regulatory factors: The next generation [J]. Gene, 1999, 237(1): 1–14.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y J, Liu G, Li Y, et al. Mda-7/ IL-24 expression inhibits breast cancer through upregulation of growth arrest-specific gene 3 (gas3) and disruption of 1 integrin function [J]. Molecular Cancer Research, 2013, 11(6): 593–603.

    Article  CAS  PubMed  Google Scholar 

  36. Lei Y Y, Wang W J, Mei J H, et al. Mitogen-activated protein kinase signal transduction in solid tumors [J]. Asian Pac J Cancer Prev, 2014, 15(20): 8539–8548.

    Article  PubMed  Google Scholar 

  37. Sarkar D, Su Z Z, Lebedeva I V, et al. Mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK [J]. Proc Natl Acad Sci USA, 2002, 99(15): 10054–10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gopalan B, Litvak A, Sharma S, et al. Activation of the Fas-FasL signaling pathway by mda-7/IL-24 kills human ovarian cancer cells [J]. Cancer Res, 2005, 65(8): 3017–3024.

    CAS  PubMed  Google Scholar 

  39. Sarkar D, Su Z Z, Lebedeva I V, et al. Mda-7 (IL-24): Signaling and functional roles [J]. Biotechniques, 2002, Suppl: 30–39.

    Google Scholar 

  40. Otkjaer K, Holtmann H, Kragstrup T W, et al. The p38 MAPK regulates IL-24 expression by stabilization of the 3’UTR of IL-24 mRNA [J]. PLoS One, 2010, 5(1): e8671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qian W, Liu J, Tong Y, et al. Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with mda-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis [J]. Leukemia, 2008, 22(2): 361–369.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta P, Su Z Z, Lebedeva I V, et al. Mda-7/IL-24: Multifunctional cancer-specific apoptosis-inducing cytokine [J]. Pharmacol Ther, 2006, 111(3): 596–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pataer A, Vorburger S A, Chada S, et al. Melanoma differentiation-associated gene-7 protein physically associates with the double-stranded RNA-activated protein kinase PKR [J]. Mol Ther, 2005, 11(5): 717–723.

    Article  CAS  PubMed  Google Scholar 

  44. Yacoub A, Gupta P, Park M A, et al. Regulation of GST-mda-7 toxicity in human glioblastoma cells by ERBB1, ERK1/2, PI3K, and JNK1-3 pathway signaling [J]. Mol Cancer Ther, 2008, 7(2): 314–329.

    Article  CAS  PubMed  Google Scholar 

  45. Sauane M, Su Z Z, Dash R, et al. Ceramide plays a prominent role in mda-7/IL-24-induced cancer-specific apoptosis [J]. Journal of Cellular Physiology, 2009, 222(3): 546–555.

    Google Scholar 

  46. Yacoub A, Park M A, Gupta P, et al. Caspase-, cathepsin-, and PERK-dependent regulation of mda-7/IL-24-induced cell killing in primary human glioma cells [J]. Molecular Cancer Therapeutics, 2008, 7(2): 297–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taha T A, Mullen T D, Obeid L M. A house divided: Ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death [J]. Biochim Biophys Acta, 2006, 1758(12): 2027–2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park M A, Hamed H A, Mitchell C, et al. A serotype 5/3 adenovirus expressing mda-7/IL-24 infects renal carcinoma cells and promotes toxicity of agents that increase ROS and ceramide levels [J]. Mol Pharmacol, 2011, 79(3): 368–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lebedeva I V, Su Z Z, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species [J]. Cancer Res, 2003, 63(23): 8138–8144.

    CAS  PubMed  Google Scholar 

  50. Malhi H, Kaufman R J. Endoplasmic reticulum stress in liver disease [J]. J Hepatol, 2011, 54(4): 795–809.

    Article  CAS  PubMed  Google Scholar 

  51. Wang M, Kaufman R J. The impact of the endoplasmic reticulum protein-folding environment on cancer development [J]. Nat Rev Cancer, 2014, 14(9): 581–597.

    Article  CAS  PubMed  Google Scholar 

  52. Malhotra J D, Kaufman R J. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? [J]. Antioxid Redox Signal, 2007, 9(12): 2277–2293.

    Article  CAS  PubMed  Google Scholar 

  53. Gao H J, Zhu Y M, He W H, et al. Endoplasmic reticulum stress induced by oxidative stress in decidual cells: A possible mechanism of early pregnancy loss [J]. Mol Biol Rep, 2012, 39(9): 9179–9186.

    Article  CAS  PubMed  Google Scholar 

  54. Corwin W L, Baust J M, Baust J G, et al. The unfolded protein response in human corneal endothelial cells following hypothermic storage: Implications of a novel stress pathway [J]. Cryobiology, 2011, 63(1): 46–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoshida H, Okada T, Haze K, et al. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response [J]. Mol Cell Biol, 2001, 21(4): 1239–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu P, Han Z, Couvillon A D, et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alphamediated NF-kappab activation and down-regulation of traf2 expression [J]. Mol Cell Biol, 2006, 26(8): 3071–3084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Do W, Herrera C, Mighty J, et al. Sigma 1 receptor plays a prominent role in IL-24-induced cancer-specific apoptosis [J]. Biochem Biophys Res Commun, 2013, 439(2): 215–220.

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Shi L, Zhang X, et al. Recombinant adenovirus IL-24-Bax promotes apoptosis of hepatocellular carcinoma cells in vitro and in vivo [J]. Cancer Gene Ther, 2010, 17(11): 771–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dash R, Richards J E, Su Z Z, et al. Mechanism by which MCL-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine [J]. Cancer Res, 2010, 70(12): 5034–5045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collina S, Gaggeri R, Marra A, et al. Sigma receptor modulators: A patent review [J]. Expert Opin Ther Pat, 2013, 23(5): 597–613.

    Article  CAS  PubMed  Google Scholar 

  61. He B, Huang X, Liu X, et al. Cancer targeting gene-virotherapy for pancreatic cancer using oncolytic adenovirus ZD55-IL-24 in immune-competent mice [J]. Mol Biol Rep, 2013, 40(9): 5397–5405.

    Article  CAS  PubMed  Google Scholar 

  62. Panneerselvam J, Munshi A, Ramesh R. Molecular targets and signaling pathways regulated by interleukin(IL)-24 in mediating its antitumor activities [J]. J Mol Signal, 2013, 8(1): 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fels D R, Koumenis C. The PERK/EIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth [J]. Cancer Biol Ther, 2006, 5(7): 723–728.

    Article  CAS  PubMed  Google Scholar 

  64. Fritsch R M, Schneider G, Saur D, et al. Translational repression of MCL-1 couples stress-induced EIF2 alpha phosphorylation to mitochondrial apoptosis initiation [J]. J Biol Chem, 2007, 282(31): 22551–22562.

    Article  CAS  PubMed  Google Scholar 

  65. Raven J F, Koromilas A E. PERK and PKR: Old kinases learn new tricks [J]. Cell Cycle, 2008, 7(9): 1146–1150.

    Article  CAS  PubMed  Google Scholar 

  66. Lebedeva I V, Sarkar D, Su Z Z, et al. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24 [J]. Oncogene, 2003, 22(54): 8758–8773.

    Article  CAS  PubMed  Google Scholar 

  67. Pinton P, Ferrari D, Magalhaes P, et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells [J]. J Cell Biol, 2000, 148(5): 857–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oakes S A, Scorrano L, Opferman J T, et al. Proapoptotic Bax and Bak regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum [J]. Proc Natl Acad Sci USA, 2005, 102(1): 105–110.

    Article  CAS  PubMed  Google Scholar 

  69. Malhotra J D, Kaufman R J. ER stress and its functional link to mitochondria: Role in cell survival and death [J]. Cold Spring Harb Perspect Biol, 2011, 3(9): a004424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bhutia S K, Das S K, Azab B, et al. Autophagy switches to apoptosis in prostate cancer cells infected with melanoma differentiation associated gene-7/interleukin-24 (mda-7/ IL-24) [J]. Autophagy, 2011, 7(9): 1076–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin C H, Shih C H, Tseng C C, et al. CXCl12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways [J]. PLoS One, 2014, 9(8): e104746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buzas K, Oppenheim J J, Zack Howard O M. Myeloid cells migrate in response to IL-24 [J]. Cytokine, 2011, 55(3): 429–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. You L, He B, Xu Z, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth [J]. Cancer Res, 2004, 64(15): 5385–5389.

    Article  CAS  PubMed  Google Scholar 

  74. Moretti R M, Montagnani Marelli M, Mai S, et al. Clusterin isoforms differentially affect growth and motility of prostate cells: Possible implications in prostate tumorigenesis [J]. Cancer Res, 2007, 67(21): 10325–10333.

    Article  CAS  PubMed  Google Scholar 

  75. Scaltriti M, Brausi M, Amorosi A, et al. Clusterin (SGP-2, ApoJ) expression is downregulated in low-and high-grade human prostate cancer [J]. Int J Cancer, 2004, 108(1): 23–30.

    Article  CAS  PubMed  Google Scholar 

  76. Scaltriti M, Santamaria A, Paciucci R, et al. Intracellular clusterin induces G2-M phase arrest and cell death in PC-3 prostate cancer cells [J]. Cancer Res, 2004, 64(17): 6174–6182.

    Article  CAS  PubMed  Google Scholar 

  77. Shannan B, Seifert M, Leskov K, et al. Challenge and promise: Roles for clusterin in pathogenesis, progression and therapy of cancer [J]. Cell Death Differ, 2006, 13(1): 12–19.

    Article  CAS  PubMed  Google Scholar 

  78. Trougakos I P, Lourda M, Agiostratidou G, et al. Differential effects of clusterin/apolipoprotein J on cellular growth and survival [J]. Free Radic Biol Med, 2005, 38(4): 436–449.

    Article  CAS  PubMed  Google Scholar 

  79. Bhutia S K, Das S K, Kegelman T P, et al. Mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer [J]. J Cell Physiol, 2012, 227(5): 1805–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Binet F, Mawambo G, Sitaras N, et al. Neuronal ER stress impedes myeloid-cell-induced vascular regeneration through IRE1alpha degradation of netrin-1[J]. Cell Metab, 2013, 17(3): 353–371.

    Article  CAS  PubMed  Google Scholar 

  81. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications [J]. Drug Resist Updat, 2004, 7(2): 97–110.

    Article  CAS  PubMed  Google Scholar 

  82. Jiang G, Liu Y Q, Wei Z P, et al. Enhanced anti-tumor activity by the combination of a conditionally replicating adenovirus mediated interleukin-24 and dacarbazine against melanoma cells via induction of apoptosis [J]. Cancer Lett, 2010, 294(2): 220–228.

    Article  CAS  PubMed  Google Scholar 

  83. Gupta P, Emdad L, Lebedeva I V, et al. Targeted combinatorial therapy of non-small cell lung carcinoma using a GST-fusion protein of full-length or truncated mda-7/IL-24 with tarceva [J]. J Cell Physiol, 2008, 215(3): 827–836.

    Article  CAS  PubMed  Google Scholar 

  84. Fisher P B. Is mda-7/IL-24 a “magic bullet” for cancer? [J]. Cancer Res, 2005, 65(22): 10128–10138.

    Article  CAS  PubMed  Google Scholar 

  85. Sarkar S, Azab B, Quinn B A, et al. Chemoprevention gene therapy (CGT) of pancreatic cancer using perillyl alcohol and a novel chimeric serotype cancer terminator virus [J]. Curr Mol Med, 2014, 14(1): 125–140.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handong Fan.

Additional information

Foundation item: Supported by the National Program on Key Basic Research Project (973 Program) (2012CB518900), the National Natural Science Foundation of China (31160240, 31260621), the 12th Five Years Key Programs for Science and Technology Development of China (2012ZX10002006), the Hangzhou Normal University Supporting Project (PE13002004042), and the Natural Science Foundation of China of Jiangxi(20114BAB204016)

Biography: LIU Huilin, female, Master candidate, research direction: molecular mechanism of hepatocellular carcinoma and liver senescence, gene therapy in hepatocellular carcinoma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, J., Jiang, X. et al. Apoptotic signal pathways and regulatory mechanisms of cancer cells induced by IL-24. Wuhan Univ. J. Nat. Sci. 21, 519–530 (2016). https://doi.org/10.1007/s11859-016-1205-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-016-1205-2

Key words

CLC number

Navigation