Skip to main content
Log in

Grain size effect of IrO2 nanocatalysts for the oxygen evolution reaction

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

Combined with air annealing, rutile-structured IrO2 nanoparticles with various sizes were prepared using colloidal method. The nanoparticles were used as the electrocatalysts for the oxygen evolution reaction (OER) in acidic media, and their grain size effect was studied. The results show that with the increase in annealing temperature, the grain size of the catalyst increases, and the voltammetric charges (the electroactive areas) and apparent activity for the OER decrease. The relationship between the intrinsic activity and the annealing temperature exhibits a volcano-type curve and the catalyst annealed at 550 °C achieved the best result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michael E G L, Floquet S. Mechanism of oxygen reactions at porous oxide electrodes Part 2-Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution [J]. Physical Chemistry Chemical Physics, 2011, 13: 5314–5335.

    Article  Google Scholar 

  2. Mitsugi C, Harumi A, Kenzo F. WET-NET japanese hydrogen program [J]. International Journal of Hydrogen Energy, 1998, 23: 159–165.

    Article  Google Scholar 

  3. Dau H, Limberg C, Rish M, et al. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis [J]. ChemCatChem, 2010, 2: 724–761.

    Article  CAS  Google Scholar 

  4. Marshall A, Børresen B, Hagen G, et al. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers-reduced energy consumption by improved electrocatalysis [J]. Energy, 2007, 32: 431–436.

    Article  CAS  Google Scholar 

  5. Song S, Zhang H, Ma X, et al. Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers [J]. International Journal of Hydrogen Energy, 2008, 33: 4955–4961.

    Article  CAS  Google Scholar 

  6. Andolftto F, Durand R, Ichas A M, et al. Solid polymer electrolyte water Electrolysis: Electrocatalysis and long-term stability [J]. International Journal of Hydrogen Energy, 1994, 19: 421–427.

    Article  Google Scholar 

  7. Rossmeisl J, Qu Z-W, Zhu H, et al. Electrolysis of water on oxide surfaces [J]. Journal of Electroanalytical Chemistry, 2007, 607: 83–89.

    Article  CAS  Google Scholar 

  8. Millet P, Dragoe D, Grigoriev S, et al. GenHyPEM: A research program on PEM water electrolysis supported by the European Commission [J]. International Journal of Hydrogen Energy, 2009, 34: 4974–4982.

    Article  CAS  Google Scholar 

  9. Han J H, Lee S W, Kim S K, et al. Study on initial growth behavior of RuO2 film grown by pulsed chemical vapor deposition: effects of substrate and reactant feeding time [J]. Chemistry of Materials, 2012, 24: 1407–1414.

    Article  CAS  Google Scholar 

  10. Bell A. The impact of nanoscience on heterogeneous catalysis [J]. Science, 2003, 299: 1688–1691.

    Article  PubMed  CAS  Google Scholar 

  11. Cruz J C, Baglio V, Siracusano S, et al. Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer [J]. Journal of Nanoparticle Research, 2011, 13: 1639–1646.

    Article  CAS  Google Scholar 

  12. Adams R, Shriner R L. Platinum oxide as a catalyst in the reduction of organic compounds (III): Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate [J]. Journal of the American Chemical Society, 1923, 45: 2171–2179.

    Article  CAS  Google Scholar 

  13. Hutchings R, Müller K, Kötz R, et al. A structural investigation of stabilized oxygen evolution catalysts [J]. Journal of Materials Science, 1984, 19: 3987–3994.

    Article  CAS  Google Scholar 

  14. Swette L L, La Conti A B, Mc Catty A. Proton-exchange membrane regenerative fuel cells [J]. Journal of Power Sources, 1994, 47: 343–351.

    Article  CAS  Google Scholar 

  15. Mattos-Costa F, De Lima-Neto P, Machado S, et al. Characterisation of surfaces modified by sol-gel RuxIr1−xO2 coatings for oxygen evolution in acid medium [J]. Electro-chimica Acta, 1998, 44: 1515–1523.

    Article  CAS  Google Scholar 

  16. Takasu Y, Murakami Y. Design of oxide electrodes with large surface area [J]. Electrochimica Acta, 2000, 45: 4135–4141.

    Article  CAS  Google Scholar 

  17. Marshall A T, Haverkamp R G. Electrocatalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticles [J]. Electrochimica Acta, 2010, 55: 1978–1984.

    Article  CAS  Google Scholar 

  18. Bonet F, Tekaia-Elhsissen K, Sarathy K. Study of the interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process [J]. Bulletin of Materials Science, 2000, 23: 165–168.

    Article  CAS  Google Scholar 

  19. Feldmann C. Preparation of nanoscale pigment particles [J]. Advanced Materials, 2001, 13: 1301–1303.

    Article  CAS  Google Scholar 

  20. Ioroi T, Kitazawa N, Yasuda K, et al. IrO2-deposited Pt electrodes for unitized regenerative polymer electrolyte fuel cells [J]. Journal of Applied Electrochemistry, 2001, 31: 1179–1183.

    Article  CAS  Google Scholar 

  21. Ioroi T, Kitazawa N, Yasuda K, et al. Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells [J]. Journal of the Electrochemical Society, 2000, 147: 2018–2022.

    Article  CAS  Google Scholar 

  22. Radmilovic V, Gasteiger H A, Ross P N. Structure and chemial composition of a cupported Pt-Ru electrocatalysts for methanol oxidation [J]. Journal of Catalysis, 1995, 154: 98–106.

    Article  CAS  Google Scholar 

  23. Lee W H, Kim H. Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions [J]. Catalysis Communications, 2011, 12: 408–411.

    Article  CAS  Google Scholar 

  24. Fierro S, Ouattara L, Calderon E H, et al. Influence of temperature on the charging/discharging process of IrO2 coating deposited on p-Si substrate [J]. Electrochemistry Communications, 2008, 10: 955–959.

    Article  CAS  Google Scholar 

  25. Sugimoto W, Kizaki T, Yokoshima K, et al. Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode [J]. Electrochimica Acta, 2004, 49: 313–320.

    Article  CAS  Google Scholar 

  26. Beutler P, Gamsjager H. Preparation and ultraviolet-visible spectrum of hexa-aquairidium(III) [J]. Journal of the Chemical Society, Chemical Communications, 1976, 14: 554–555.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Chen.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (21073137) and National Basic Research Program of China (2012CB932800)

Biography: HU Wei, female, Lecturer, Ph. D., research direction: electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Chen, S. Grain size effect of IrO2 nanocatalysts for the oxygen evolution reaction. Wuhan Univ. J. Nat. Sci. 18, 289–294 (2013). https://doi.org/10.1007/s11859-013-0930-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-013-0930-z

Key words

CLC number

Navigation