Skip to main content
Log in

Variance of the number of zeroes of shift-invariant Gaussian analytic functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Following Wiener, we consider the zeroes of Gaussian analytic functions in a strip in the complex plane, with translation-invariant distribution. We show that the variance of the number of zeroes in a long horizontal rectangle [−T,T] × [a, b] is asymptotically between cT and CT2, with positive constants c and C. We also supply with conditions (in terms of the spectral measure) under which the variance grows asymptotically linearly with T, as a quadratic function of T, or has intermediate growth. The results are compared with known results for real stationary Gaussian processes and other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Inventiones mathematicae 142 (2000), 351–395.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Buckley and N. Feldheim, Variance and CLT for the winding of a planar stationary Gaussian process, Probability Theory and Related Fields, to appear, preprint available at arXiv:1606.08208.

  3. D. Chambers and E. Slud, Central limit theorems for nonlinear functionals of stationary Gaussian processes, Probability Theory and Related Fields 80 (1989), 323–346.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Cramér and M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley series in Probability and Mathematical Statistics, John Wiley & Sons, New York–London–Sidney, 1967.

    Google Scholar 

  5. J. Cuzick, A central limit theorem for the number of zeros of a stationary Gaussian process, Annals of Probability 4 (1976), 547–556.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Durrett, Probability: Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 31, Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  7. A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bulletin of the American Mathematical Society 32 (1995), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Feldheim, Zeroes of Gaussian analytic functions with translation-invariant distribution, Israel Journal of Mathematics 195 (2013), 317–345.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, New York–London–Sidney, 1971.

    MATH  Google Scholar 

  10. P. J. Forrester and G. Honner, Exact statistical properties of the zeros of complex random polynomials, Joural of Physics A. Mathematical and General 32 (1999), 2961–2981.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Ghosh and O. Zeitouni, Large deviations for zeros of random polynomials with i.i.d. exponential coefficients, International Mathematics Research Notices (2016), 1308–1347.

    Google Scholar 

  12. A. Granville and I. Wigman, The distribution of the zeros of random trigonometric polynomials, American Journal of Mathematics 133 (2011), 295–357.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Hanin, Correlations and pairing between zeros and critical points of Gaussian random polynomials, International Mathematics Research Notices (2015), 381–421.

    Google Scholar 

  14. J. B. Hough, M. Krishnapur, Y. Peres and B. Virag, Zeros of Gaussian Analytic Functions and Determinantal Processes, University Lecture Series, Vol. 51, American Mathematical Society, Providence, RI, 2009.

    Google Scholar 

  15. I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero mean, Theory of Probability and its Applications 16 (1971), 228–248.

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Kabluchko and D. Zaporozhets, Asymptotic distribution of complex zeros of random analytic functions, Annals of Probability 42 (2014), 1374–1395.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Kac, On the average number fo real roots of a random algebraic equation, Bulletin of the American Mathematical Society 18 (1943), 29–35.

    Google Scholar 

  18. Y. Katznelson, An Introduction to Harmonic Analysis Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  19. M. F. Kratz, Level crossings and other level functionals of stationary Gaussian processes, Probability Surveys 3 (2006), 230–288.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Krishnapur, P. Kurlberg and I. Wigman, Nodal length fluctuations for arithmetic random waves, Annals of Mathematics 177 (2013), 699–737.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. B. Maslova, On the distribution of the number of real roots of random polynomials, Theory of Probability and its Applications 19 (1974), 461–473.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Nazarov and M. Sodin, Random complex zeroes and random nodal lines, in Proceedings of the International Congress of Mathematicians. Vol. III, Hindustan Book Agency, New Delhi, 2010, pp. 1450–1484.

    Google Scholar 

  23. F. Nazarov and M. Sodin, What is a...Gaussian entire function?, Notices of the American Mathematical Society 57 (2010), 375–377.

    MathSciNet  MATH  Google Scholar 

  24. F. Nazarov and M. Sodin, Fluctuations in random complex zeroes: Asymptotic normality revisited, International Mathematics Research Notices (2011), 5720–5759.

    Google Scholar 

  25. H. Nguyen, O. Nguyen and V. Vu, On the number of real roots of random polynomials, Communications in Contemporary Mathematics 18 (2016), 1550052.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Mathematical Sociey Colloquium Publications, Vol. 19, American Mathematical Society, Providence, RI, 1987.

    Google Scholar 

  27. S. O. Rice, Mathematical analysis of random noise, Bell System Technical Jourournal 24 (1945), 46–156.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Shiffman and S. Zelditch, Number variance of random zeros on complex manifolds, Geometric and Functional Analysis 18 (2008), 1422–1475.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Slud, Multiple Wiener–Ito integral expansions for level-crossing-count functionals, Probability Theory and Related Fields 87 (1991), 349–364.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Sodin and B. Tsirelson, Random complex zeroes. I. Asymptotic normality, Israel Journal of Mathematics 144 (2004), 125–149.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Söze, Real zeroes of random polynomials, I. Flip-invariance, Turán’s lemma, and the Newton–Hadamard polygon, Israel Journal of Mathematics 220 (2017), 817–836.

    MATH  Google Scholar 

  32. K. Söze, Real zeroes of random polynomials, II. Descartes’ rule of signs and anticoncentration on the symmetric group, Israel Journal of Mathematics 220 (2017), 837–872.

    MATH  Google Scholar 

  33. I. Wigman, Fluctuations of the nodal length of random spherical harmonics, Communications in Mathematical Physics 298 (2010), 787–831.

    Article  MathSciNet  MATH  Google Scholar 

  34. O. Zeitouni and S. Zelditch, Large deviations of empirical measures of zeros of random polynomials, International Mathematics Research Notices (2010), 3935–3992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Dvora Feldheim.

Additional information

Research supported by the Science Foundation of the Israel Academy of Sciences and Humanities, grant 166/11; by the United States–Israel Binational Science Foundation, grant 2012037; and by a National Science Foundation postdoctoral fellowship grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldheim, N.D. Variance of the number of zeroes of shift-invariant Gaussian analytic functions. Isr. J. Math. 227, 753–792 (2018). https://doi.org/10.1007/s11856-018-1737-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1737-6

Navigation