Skip to main content
Log in

On the genericity of loxodromic actions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Suppose that a finitely generated group G acts by isometries on a δ-hyperbolic space, with at least one element acting loxodromically. Suppose that the elements of G have a normal form such that the language of normal forms can be recognized by a finite state automaton. Suppose also that a certain compatibility condition linking the automatic and the δ-hyperbolic structures is satisfied. Then we prove that in the “ball” consisting of elements of G whose normal form is of length at most l, the proportion of elements which act loxodromically is bounded away from zero, as l tends to infinity. We present several applications of this result, including the genericity of pseudo-Anosov braids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro and H. Short, Notes on word hyperbolic groups, in Group Theory from a Geometrical Viewpoint (Trieste, 1990), World Scientific, River Edge, NJ, 1991, pp. 3–63.

    Google Scholar 

  2. F. Atalan and M. Korkmaz, The number of pseudo-Anosov elements in the mapping class group of a four-holed sphere, Turkish Journal of Mathematics 34 (2010), 585–592.

    MathSciNet  MATH  Google Scholar 

  3. J. Behstock, M. F. Hagen and A. Sisto, Hierarchically hyperbolic spaces I: curve complexes for cubical groups, arxiv:1412:2171.

  4. D. Bernardete, M. Gutierrez and Z. Nitecki, Braids and the Nielson–Thurston classification, Journal of Knot Theory and its Ramifications 4 (1995), 549–618.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Bessis, The dual braid monoid, Annales Scientifiques de l’école Normale Supérieure 36 (2003), 647–683.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. S. Birman, V. Gebhardt and J. Gonzalez-Meneses, Conjugacy in Garside groups I: Cyclings, powers, and rigidity, Groups, Geometry, and Dynamics 1 (2007), 221–279.

    MATH  Google Scholar 

  7. E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Inventiones Mathematicae 17 (1972), 245–271.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext. Springer, New York, 2012.

    Book  MATH  Google Scholar 

  9. M. Calvez, Dual Garside structure and reducibility of braids, Journal of Algebra 356 (2012), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Calvez and B. Wiest, Curve graphs and Garside groups, Geometriae Dedicata 188 (2017), 195–2013.

    Article  MathSciNet  MATH  Google Scholar 

  11. P.-E. Caprace, Y. de Cornulier, N. Monod and R. Tessera, Amenable hyperbolic groups, Journal of the European Mathematical Society 17 (2015), 2903–2947.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Caruso, On the genericity of pseudo-Anosov braids I: rigid braids, Groups, Geometry, and Dynamics, to appear, arXiv:1306.3757.

  13. S. Caruso and B. Wiest, On the genericity of pseudo-Anosov braids II: conjugations to rigid braids, Groups, Geometry, and Dynamics, to appear, arXiv:1309.6137

  14. R. Charney and J. Meier, The language of geodesics for Garside groups, Mathematische Zeitschrift 248 (2004), 495–509.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, Vol. 1441, Springer, Berlin, 1990.

    Book  MATH  Google Scholar 

  16. J. Crisp and B. Wiest, Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups, Algebraic & Geometric Topology 4 (2004), 439–472.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Dehornoy, Groupes de Garside, Annales Scientifiques de l’école Normale Supérieure 35 (2002), 267–306.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Dehornoy, F. Digne, E. Godelle, D. Krammer and J. Michel, Foundations of Garside Theory, EMS Tracts in Mathematics, Vol. 22, European Mathematical Society, Zürich, 2015.

    Book  MATH  Google Scholar 

  19. C. Drutu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), 959–1058.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. ElRifai and H. Morton, Algorithms for positive braids, Quarterly Journal of Mathematics. Oxford 45 (1994), 479–497.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. A. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word Processing in Groups, Jones and Bartlett Publ., Boston, MA, 1992.

    MATH  Google Scholar 

  22. B. Farb, Relatively hyperbolic groups, Geometric and Functional Analysis 8 (1998), 810–840.

    Article  MathSciNet  MATH  Google Scholar 

  23. É. Ghys and P. de la Harpe, La propriété de Markov pour les groupes hyperboliques, in Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progress in Mathematics, Vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 165–187.

    Chapter  Google Scholar 

  24. J. González-Meneses and B. Wiest, Reducible braids and Garside theory, Algebraic & Geometric Topology 11 (2011), 2971–3010.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Groves and J. F. Manning, Dehn filling in relatively hyperbolic groups, Israel Journal of Mathematics 168 (2008), 317–429.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. F. Hagen, The simplicial boundary of a CAT(0) cube complex, Algebraic & Geometric Topology 13 (2013), 1299–1367.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. F. Hagen, Weak hyperbolicity of cube complexes and quasi-arboreal groups, Journal of Topology 7 (2014), 385–418.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Lenzhen, K. Rafi and J. Tao, The shadow of a Thurston geodesic to the curve graph, Journal of Topology 8 (2015), 1085–1118.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Maher, Linear progress in the complex of curves, Transactions of the American Mathematical Society 362 (2010), 2963–2991.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Maher, Exponential decay in the mapping class group, Journal of the London Mathematical Society 86 (2012), 366–386.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Masur and Y. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geometric and Functional Analysis 10 (2000), 902–974.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Masur and Y. Minsky, Quasiconvexity in the curve complex, in In the Tradition of Ahlfors and Bers, III, Contemporary Mathematics, Vol. 355, American Mathematical Society, Providence, RI, 2004, pp. 309–320.

    Chapter  Google Scholar 

  33. H. Masur, L. Mosher and S. Schleimer, On train-track splitting sequences, Duke Mathematical Journal 161 (2012), 1613–1656.

    Article  MathSciNet  MATH  Google Scholar 

  34. W. D. Neumann and M. Shapiro, A Short Course in Geometric Group Theory, Notes for the ANU Workshop January/February 1996, Topology Atlas Document no. iaai-13, available at http://www.math.columbia.edu/~neumann/preprints/or at http://at.yorku.ca/topology/educ.htm.

    Google Scholar 

  35. G. A. Niblo and L. D. Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998), 621–633.

    Article  MathSciNet  MATH  Google Scholar 

  36. I. Rivin, Walks on groups,counting reducible matrices,polynomials,and surface and free group automorphisms, Duke Mathematical Journal 142 (2008), 353–379.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Sisto, Contracting elements and random walks, arXiv:1112.2666.

  38. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Wiest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiest, B. On the genericity of loxodromic actions. Isr. J. Math. 220, 559–582 (2017). https://doi.org/10.1007/s11856-017-1540-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1540-9

Navigation