Skip to main content
Log in

On sharp bounds for marginal densities of product measures

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We discuss optimal constants in a recent result of Rudelson and Vershynin on marginal densities. We show that if f is a probability density on Rn of the form f(x) = П n i=1 f i (x i ), where each f i is a density on R, say bounded by one, then the density of any marginal π E (f) is bounded by 2k/2, where k is the dimension of E. The proof relies on an adaptation of Ball’s approach to cube slicing, carried out for functions. Motivated by inequalities for dual affine quermassintegrals, we also prove an isoperimetric inequality for certain averages of the marginals of such f for which the cube is the extremal case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ball, Cube slicing in Rn, Proceedings of the American Mathematical Society 97 (1986), no. 3, 465–473.

    MathSciNet  MATH  Google Scholar 

  2. K. Ball, Volumes of sections of cubes and related problems, Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Mathematics, vol. 1376, Springer, Berlin, 1989, pp. 251–260.

    Book  Google Scholar 

  3. F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Inventiones Mathematicae 134 (1998), no. 2, 335–361.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. G. Bobkov and G. P. Chistyakov, Bounds for the maximum of the density of the sum of independent random variables, Rossiískaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheskií Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI) 408 (2012), no. Veroyatnost i Statistika. 18, 62–73, 324.

    MathSciNet  Google Scholar 

  5. S. G. Bobkov and G. P. Chistyakov, On concentration functions of random variables, Journal of Theoretical Probability 28 (2015), no. 3, 976–988.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. J. Brascamp and E. H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Mathematics 20 (1976), no. 2, 151–173.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. J. Brascamp, Elliott H. Lieb and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Brzezinski, Volume estimates for sections of certain convex bodies, Mathematische Nachrichten 286 (2013), no. 17-18, 1726–1743.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Dann, G. Paouris and P. Pivovarov, Bounding marginal densities via affine isoperimetry, Proc. London Math. Soc. (2016), electronically published on July 1, 2016, DOI: 10.1112/plms/pdw026 (to appear in print).

    Google Scholar 

  10. R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002, Revised reprint of the 1989 original.

    Book  Google Scholar 

  11. E. Gluskin, On the multivariable version of Ball’s slicing cube theorem, Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, vol. 1850, Springer, Berlin, 2004, pp. 117–121.

    MATH  Google Scholar 

  12. E. L. Grinberg, Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies, Mathematische Annalen 291 (1991), no. 1, 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. König and A. Koldobsky, On the maximal measure of sections of the n-cube, Geometric Analysis, Mathematical Relativity, and Nonlinear Partial Differential Equations, Contemporary Mathematics, vol. 599, American Mathematical Society, Providence, RI, 2013, pp. 123–155.

    MATH  Google Scholar 

  14. E. Lutwak, A general isepiphanic inequality, Proceedings of the American Mathematical Society 90 (1984), no. 3, 415–421.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Lutwak, Intersection bodies and dual mixed volumes, Advances in Mathematics 71 (1988), no. 2, 232–261.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. A. Rogers, A single integral inequality, Journal of the London Mathematical Society. Second Series 32 (1957), 102–108.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. A. Rogozin, An estimate for the maximum of the convolution of bounded densities, Akademiya Nauk SSSR. Teoriya Veroyatnosteí i ee Primeneniya 32 (1987), no. 1, 53–61, English translation: Theory Probab. Appl. 32 (1987), no. 1, 48-56.

    MathSciNet  MATH  Google Scholar 

  18. M. Rudelson and R. Vershynin, Small ball probabilities for linear images of high dimensional distributions, Int. Math. Res. Not. 19 (2015), 9594–9617.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Tikhomirov, The smallest singular value of random rectangular matrices with no moment assumptions on entries, Israel J. Math. 212 (2016), no. 1, 289–314.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galyna Livshyts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livshyts, G., Paouris, G. & Pivovarov, P. On sharp bounds for marginal densities of product measures. Isr. J. Math. 216, 877–889 (2016). https://doi.org/10.1007/s11856-016-1431-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1431-5

Navigation