Skip to main content
Log in

Double roots of random littlewood polynomials

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider random polynomials whose coefficients are independent and uniform on {-1, 1}. We prove that the probability that such a polynomial of degree n has a double root is o(n -2) when n+1 is not divisible by 4 and asymptotic to \(1/\sqrt 3 \) otherwise. This result is a corollary of a more general theorem that we prove concerning random polynomials with independent, identically distributed coefficients having a distribution which is supported on {-1, 0, 1} and whose largest atom is strictly less than \(\frac{{8\sqrt 3 }}{{\pi {n^2}}}\). In this general case, we prove that the probability of having a double root equals the probability that either -1, 0 or 1 are double roots up to an o(n -2) factor and we find the asymptotics of the latter probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Complex Analysis, third edition, McGraw-Hill Book Co., New York, 1978.

    Google Scholar 

  2. P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arithmetica 18 (1971), 355–369.

    MathSciNet  MATH  Google Scholar 

  3. M.-C. Chang, private communication, October 27, 2014.

    Google Scholar 

  4. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arithmetica 34 (1979), 391–401.

    MathSciNet  MATH  Google Scholar 

  5. O. N. Feldheim and A. Sen, Double roots of random polynomials with integer coefficients, (2016), arXiv:1603.03811.

    Google Scholar 

  6. M. Filaseta and S. Konyagin, Squarefree values of polynomials all of whose coefficients are 0 and 1, Acta Arithmetica 74 (1996), 191–205.

    MathSciNet  MATH  Google Scholar 

  7. G. Freiman and S. Litsyn, Asymptotically exact bounds on the size of high-order spectral-null codes, Institute of Electrical and Electronics Engineers. Transactions on Information Theory 45 (1999), 1798–1807.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Kronecker, Zwei sätse über Gleichungen mit ganzzahligen Coefficienten, Journal für die Reine und Angewandte Mathematik 53 (1857), 173–175. See also Leopold Kronecker’s Werke, Vol. 1, Chelsea Publishing Co., New York, 1968, pp. 103–108.

    Article  MathSciNet  Google Scholar 

  9. G. Kuperberg, Sh. Lovett and R. Peled, Probabilistic existence of regular combinatorial structures, in STOC’ 12—Proceedings of the 2012 ACM Symposium on Theory of Computing, ACM, New York, 2012, pp. 1091–1106.

    MATH  Google Scholar 

  10. S. V. Konyagin, On the number of irreducible polynomials with 0, 1 coefficients, Acta Arithmetica 88 (1999), 333–350.

    MathSciNet  MATH  Google Scholar 

  11. G. Kozma and O. Zeitouni, On common roots of random Bernoulli polynomials, International Mathematics Research Notices 18 (2013), 4334–4347.

    MathSciNet  MATH  Google Scholar 

  12. D. H. Lehmer, Factorization of certain cyclotomic functions, Annals of Mathematics 34 (1933), 461–479.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Morandi, Field and Galois Theory, Graduate Texts in Mathematics, Vol. 167, Springer-Verlag, New York, 1996.

  14. M. J. Mossinghoff, Polynomials with restricted coefficients and prescribed noncyclotomic factors, LMS Journal of Computation and Mathematics 6 (2003), 314–325.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mathoverflow discussion, http://mathoverflow.net/questions/7969/irreduciblepolynomials-with-constrained-coefficients.

  16. H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge Studies in Advanced Mathematics, Vol. 97, Cambridge University Press, Cambridge, 2007.

  17. A. M. Odlyzko and B. Poonen, Zeros of polynomials with 0, 1 coefficients, L’Enseignement Mathématique 39 (1993), 317–348.

    MathSciNet  MATH  Google Scholar 

  18. A. Sárközi and E. Szemerédi, Über ein Problem von Erdős und Moser, Acta Arithmetica 11 (1965), 205–208.

    MathSciNet  MATH  Google Scholar 

  19. C. L. Stewart, Algebraic integers whose conjugates lie near the unit circle, Bulletin de la Société Mathématique de France 106 (1978), 169–176.

    MathSciNet  MATH  Google Scholar 

  20. N. R. Saxena and J. P. Robinson, Accumulator compression testing, IEEE Transactions on Computers C-35 (1986), 317–321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Zeitouni.

Additional information

Supported by an ISF grant and an IRG grant.

Supported by NSF grant 1406247.

Supported by an ISF grant and by the Herman P. Taubman professorial chair of Mathematics at WIS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peled, R., Sen, A. & Zeitouni, O. Double roots of random littlewood polynomials. Isr. J. Math. 213, 55–77 (2016). https://doi.org/10.1007/s11856-016-1328-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1328-3

Navigation