Skip to main content
Log in

Measure partitions using hyperplanes with fixed directions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study nested partitions of R d obtained by successive cuts using hyperplanes with fixed directions. We establish the number of measures that can be split evenly simultaneously by taking a partition of this kind and then distributing the parts among k sets. This generalises classical necklace splitting results and their more recent high-dimensional versions. With similar methods we show that in the plane, for any t measures there is a path formed only by horizontal and vertical segments using at most t - 1 turns that splits them by half simultaneously, and optimal masspartitioning results for chessboard colourings of R d using hyperplanes with fixed directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Aurenhammer, F. Hoffmann and B. Aronov, Minkowski-type theorems and leastsquares clustering, Algorithmica 20 (1998), 61–76.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Akopyan and R. N. Karasev, Kadets-type theorems for partitions of a convex body, Discrete & Computational Geometry 48 (2012), 766–776.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon, Splitting necklaces, Advances in Mathematics 63 (1987), 247–253.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Alon and D. B. West, The Borsuk–Ulam theorem and bisection of necklaces, Proceedings of the American Mathematical Society 98 (1986), 623–628.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bereg, Orthogonal equipartitions, Computational Geometry 42 (2009), 305–314.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. V. M. Blagojevic and G. M. Ziegler, The ideal-valued index for a dihedral group action, and mass partition by two hyperplanes, Topology and its Applications 158 (2011), 1326–1351.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. V. M. Blagojevic and G. M. Ziegler, Convex equipartitions via equivariant obstruction theory, Israel Journal of Mathematics 200 (2014), 49–77.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. De Longueville, Notes on the topological Tverberg theorem, Discrete Mathematics 241 (2001), 207–233.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. De Longueville and R. T. Živaljevic, Splitting multidimensional necklaces, Advances in Mathematics 218 (2008), 926–939.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dold, Simple proofs of Borsuk–Ulam results, in Proceedings of the Northwestern Homotopy Theory Conference (Evanson, Ill. 1982), Contemporary Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1983, pp. 65–69.

    MATH  Google Scholar 

  11. E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems, Ergodic Theory and Dynamical Systems 8 (1988), 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Guth and N. H. Katz, On the Erd?os distinct distances problem in the plane, Annals of Mathematics, to appear.

  13. M. Gromov, Isoperimetry of waists and concentration of maps, Geometric and Functional Analysis 13 (2003), 178–215.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. H. Goldberg and D. B. West, Bisection of circle colorings, SIAM Journal on Algebraic and Discrete Methods 6 (1985), 93–106.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. R. Hobby and J. R. Rice, A moment problem in L1 approximation, Proceedings of the American Mathematical Society 16 (1965), 665–670.

    MathSciNet  MATH  Google Scholar 

  16. R. N. Karasev, A. Hubard and B. Aronov, Convex equipartitions: the spicy chicken theorem, Geometriae Dedicata 170 (2014), 263–279.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Matoušek, Geometric range searching, ACM Computing Surveys 26 (1994), 422–461.

    Article  Google Scholar 

  18. J. Matoušek, Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  19. Y. Memarian, On Gromov’s waist of the sphere theorem, Journal of Topology and Analysis 3 (2011), 7–36.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Özaydin, Equivariant maps for the symmetric group, unpublished preprint, University of Winsconsin-Madison, 17 pages, 1987.

    Google Scholar 

  21. E. A. Ramos, Equipartition of mass distributions by hyperplanes, Discrete & Computational Geometry 15 (1996), 147–167.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Sheffer, Distinct distances: Open problems and current bounds, arXiv:1406.1949 (2014).

    Google Scholar 

  23. P. Soberón, Balanced convex partitions of measures in Rd, Mathematika 58 (2012), 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. H. Stone and J. W. Tukey, Generalized “sandwich” theorems, Duke Mathematical Journal 9 (1942), 356–359.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Uno, T. Kawano and M. Kano, Bisections of two sets of points in the plane lattice, IEICE Transactions on Fundamentals E92-A (2009), 502–507.

    Article  Google Scholar 

  26. A. Y. Volovikov, On a topological generalization of the Tverberg theorem, Mathematical Notes 59 (1996), 324–326.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. T. Živaljevic, Illumination complexes, ?-zonotopes, and the polyhedral curtain theorem, Computational Geometry 48 (2015), 225–236.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roman N. Karasev or Edgardo Roldán-Pensado.

Additional information

Supported by the Dynasty Foundation and the Russian Foundation for Basic Research grants 15-31-20403 (mol a ved) and 15-01-99563 (A).

Supported CONACyT project 166306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, R.N., Roldán-Pensado, E. & Soberón, P. Measure partitions using hyperplanes with fixed directions. Isr. J. Math. 212, 705–728 (2016). https://doi.org/10.1007/s11856-016-1303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1303-z

Navigation