Skip to main content
Log in

Relaxation control for a class of evolution hemivariational inequalities

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a control system governed by a class of evolution hemivariational inequalities. The constraint on the control is given by a multivalued function with nonconvex values that is lower semicontinuous with respect to the state variable. Meanwhile, we handle the same system in which the constraint on the control is the upper semicontinuous convex valued regularization of the original constraint. We finally study relations between the solution sets of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften, Vol. 264, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  2. H. Brezis, Operateurs maximaux monotones et semi-groups de contractions dans les espaces de Hilbert, North-Holland, Amsterdam-London, 1973.

    Google Scholar 

  3. S. Carl, Extremal solutions of parabolic hemivariational inequalities, Nonlinear Analysis 47 (2001), 5077–5088.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, Journal of Mathematical Analysis and Applications. Theory, Methods & Applications 80 (1981), 102–129.

    Article  MATH  Google Scholar 

  5. F. H. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, Vol. 5, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.

    Book  MATH  Google Scholar 

  6. Z. Denkowski, S. Migórski and A. Ochal, A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Analysis. Real World Applications 12 (2011), 1883–1895.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Denkowski, S. Migórski and A. Ochal, Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, Control and Cybernetics 36 (2007), 611–632.

    MathSciNet  MATH  Google Scholar 

  8. F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, Journal of Multivariate Analysis 7 (1977), 149–182.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. J. Himmelberg, Measurable relations, Fundamenta Mathematicae 87 (1975), 53–72.

    MathSciNet  MATH  Google Scholar 

  10. S. C. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, 1997.

    Book  MATH  Google Scholar 

  11. Z. H. Liu and D. Motreanu, A class of variational-hemivariational inequalities of elliptic type, Nonlinearity 23 (2010), 1741–1752.

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. H. Liu, On boundary variational-hemivariational inequalities of elliptic type, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 140 (2010), 419–434.

    Article  MathSciNet  MATH  Google Scholar 

  13. Z. H. Liu, Existence results for quasilinear parabolic hemivariational inequalities, Journal of Differential Equations 244 (2008), 1395–1409.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. H. Liu, Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse Problems 21 (2005), 13–20.

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. H. Liu, A class of evolution hemivariational inequalities, Nonlinear Analysis. Theory, Methods & Applications 36 (1999), 91–100.

    Article  MATH  Google Scholar 

  16. S. Migórski, On existence of solutions for parabolic hemivariational inequalities, Journal of Computational and Applied Mathematics 129 (2001), 77–87.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Migórski, Evolution hemivariational inequalities in infinite dimension and their control, Nonlinear Analysis. Theory, Methods & Applications 47 (2001), 101–112.

    Article  MATH  Google Scholar 

  18. S. Migórski, Existence and relaxation results for nonlinear evolution inclusions revisited, Journal of Applied Mathematics and Stochastic Analysis 8 (1995), 143–149.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Applicable Analysis 84 (2005), 669–699.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Migórski and A. Ochal, Boundary hemivariational inequality of parabolic type, Nonlinear Analysis. Theory, Methods & Applications 57 (2004), 579–596.

    Article  MATH  Google Scholar 

  21. Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York-Basel-Hong Kong, 1995.

    Google Scholar 

  22. A. Ochal, Existence results for evolution hemivariational inequalities of second order, Nonlinear Analysis. Theory, Methods & Applications 60 (2005), 1369–1391.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. S. Papageorgiou, On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities, Journal of Mathematical Analysis and Applications 205 (1997), 434–453.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. S. Papageorgiou and N. Yannakakis, Second order nonlinear evolution inclusions I: Existence and relaxation results, Acta Mathematica Sinica. English Series 21 (2005), 977–996.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Y. Park and T. G. Ha, Existence of antiperiodic solutions for hemivariational inequalities, Nonlinear Analysis. Theory, Methods & Applications 68 (2008), 747–767.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Y. Park and J. U. Jeong, Optimal control of hemivariational inequalities with delays, Taiwanese Journal of Mathematics 15 (2011), 433–447.

    MathSciNet  MATH  Google Scholar 

  27. A. A. Tolstonogov, Relaxation in non-convex control problems described by first-order evolution equations, Matematicheskiĭ Sbornik 190(11) (1999), 135–160; English translation: Sbornik. Mathematics 190 (1999), 1689–1714.

    Article  MathSciNet  Google Scholar 

  28. A. A. Tolstonogov, Relaxation in control systems of subdifferential type, Izvestiya. Mathematics 70 (2006), 121–152.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. A. Tolstonogov, Bogolyubov’s theorem under constraints generated by a lower semicontinuous differential inclusion, Sbornik. Mathematics 196 (2005), 263–285.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. A. Tolstonogov, Scorza-Dragoni’s theorem for multi-valued mappings with variable domain of definition, Matematicheskie Zametki 48(5) (1990), 109–120; English translation: Mathematical Notes 48 (1990), 1151–1158.

    MathSciNet  Google Scholar 

  31. A. A. Tolstonogov and D. A. Tolstonogov, Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems, Set-Valued Analysis 4 (1996), 173–203.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. A. Tolstonogov and D. A. Tolstonogov, Lp-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems, Set-Valued Analysis 4 (1996), 237–269.

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Zeidler, Nonlinear Functional Analysis and Its Applications, IIA and IIB, Springer, New York, 1990.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyou Liu.

Additional information

Project supported by NNSF of China Grants Nos. 11271087 and 61263006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Z. Relaxation control for a class of evolution hemivariational inequalities. Isr. J. Math. 202, 35–58 (2014). https://doi.org/10.1007/s11856-014-1066-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-014-1066-3

Keywords

Navigation