Skip to main content
Log in

Splitting fields of characteristic polynomials of random elements in arithmetic groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We discuss rather systematically the principle, implicit in earlier works, that for a “random” element in an arithmetic subgroup of a (split, say) reductive algebraic group over a number field, the splitting field of the characteristic polynomial, computed using any faitfhful representation, has Galois group isomorphic to the Weyl group of the underlying algebraic group. Besides tools such as the large sieve, which we had already used, we introduce some probabilistic ideas (large deviation estimates for finite Markov chains) and the general case involves a more precise understanding of the way Frobenius conjugacy classes are computed for such splitting fields (which is related to a map between regular elements of a finite group of Lie type and conjugacy classes in the Weyl group which had been considered earlier by Carter and Fulman for other purposes; we show in particular that the values of this map are equidistributed).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Bhattacharya and E C. Waymire, Stochastic Processes with Applications, Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1990.

    Google Scholar 

  2. A. Borel, Linear Algebraic Groups, 2nd edition, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  3. J. Bourgain and A. Gamburd, Uniform expansion bounds for Cayley graphs of SL2(F p), Annals of Mathematics 167 (2008), 625–642.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Breuillard, B. Green and T. Tao, Approximate subgroups of linear groups, Geometric and Functional Analysis 21 (2011), 774–819.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985.

    MATH  Google Scholar 

  6. R. W. Carter, Semisimple conjugacy classes and classes in the Weyl group, Journal of Algebra 260 (2003), 99–110.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Clozel, Démonstration de la conjecture τ, Inventiones Mathematicae 151 (2003), 297–328.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Demazure, Schémas en groupes réductifs, Bulletin de la Société Mathématique de France 93 (1965), 369–413.

    MathSciNet  MATH  Google Scholar 

  9. J. Fulman, Applications of the Brauer complex: card shuffling, permutation statistics, and dynamical systems, Journal of Algebra 243 (2001), 96–122.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Gorodnik and A. Nevo, Splitting fields of elements in arithmetic groups, Mathematical Research Letters 18 (2011), 1281–1288.

    MathSciNet  Google Scholar 

  11. A. Gorodnik and A. Nevo, The Ergodic Theory of Lattice Subgroups, Annals of Mathematics Studies, Vol. 172, Princeton University Press, Princeton, NJ, 2010.

    Google Scholar 

  12. H. Helfgott, Growth and generation in SL 2(Z /p Z), Annals of Mathematics 167 (2008), 601–623.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Hrushovski and A. Pillay, Definable subgroups of algebraic groups over finite fields, Journal für die Reine und Angewandte Mathematik 462 (1995), 69–91.

    MathSciNet  MATH  Google Scholar 

  14. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, Vol. 53, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  15. F. Jouve, E. Kowalski and D. Zywina, An explicit integral polynomial whose splitting field has Galois group W(E 8), Journal de Théorie des Nombres de Bordeaux 20 (2008), 761–782.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Jouve, The large sieve and random walks on left cosets of arithmetic groups, Commentarii Mathematici Helvetici 85 (2010), 647–704.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. M. Katz, Factoring polynomials in finite fields: an application of Lang-Weil to a problem in graph theory, Mathematische Annalen 286 (1990), 625–637.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Kowalski, The Large Sieve and its Applications: Arithmetic Geometry, Random Walks, Discrete Groups, Cambridge Tracts in Mathematics, Vol. 175, Cambridge University Press, Cambridge, 2008.

    Book  Google Scholar 

  19. P. Lezaud, Chernoff-type bound for finite Markov chains, The Annals of Applied Probability 8 (1998), 849–867.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. R. Matthews, L. N. Vaserstein and B. Weisfeiler, Congruence properties of Zariskidense subgroups, Proceedings of the London Mathematical Society 14 (1982), 514–532.

    MathSciNet  Google Scholar 

  21. M. V. Nori, On subgroups of GL n(F p), Inventiones Mathematicae 88 (1987), 257–275.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, New York, 1994.

    MATH  Google Scholar 

  23. G. Prasad and A. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publications Mathématiques. Institut de Hautes Études Scientifiques 109 (2009), 113–184.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank, preprint (2010), arXiv:1005.1858v1

  25. A. Salehi Golsefidy and P. Varjú, Expansion in perfect groups, preprint (2010), arXiv:1108.4900v2.

  26. L. Saloff-Coste, Random walks on finite groups, in Probability on discrete structures I, Encyclopaedia of Mathematical Sciences, Vol. 110, Springer, Berlin, 2004, pp. 263–346.

    Chapter  Google Scholar 

  27. Schémas en groupes. III: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin, 1962/1964.

  28. T. A. Springer, Linear Algebraic Groups, 2nd edition, Progress in Mathematics, Vol. 9, Birkhaüser, Basel, 1998.

    Book  MATH  Google Scholar 

  29. R. Steinberg, Regular elements of semisimple algebraic groups, Publications Mathématiques. Institut de Hautes Études Scientifiques 25 (1965), 49–80.

    Article  Google Scholar 

  30. B. Weisfeiler, Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups, Annals of Mathematics 120 (1984), 271–315.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Jouve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouve, F., Kowalski, E. & Zywina, D. Splitting fields of characteristic polynomials of random elements in arithmetic groups. Isr. J. Math. 193, 263–307 (2013). https://doi.org/10.1007/s11856-012-0117-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0117-x

Keywords

Navigation