Skip to main content
Log in

A partial analog of the integrability theorem for distributions on p-adic spaces and applications

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let X be a smooth real algebraic variety. Let ξ be a distribution on it. One can define the singular support of ξ to be the singular support of the D X -module generated by ξ (sometimes it is also called the characteristic variety). A powerful property of the singular support is that it is a coisotropic subvariety of T*X. This is the integrability theorem (see [KKS, Mal, Gab]). This theorem turned out to be useful in representation theory of real reductive groups (see, e.g., [AG4, AS, Say]).

The aim of this paper is to give an analog of this theorem to the non-Archimedean case. The theory of D-modules is not available to us so we need a different definition of the singular support. We use the notion wave front set from [Hef] and define the singular support to be its Zariski closure. Then we prove that the singular support satisfies some property that we call weakly coisotropic, which is weaker than being coisotropic but is enough for some applications. We also prove some other properties of the singular support that were trivial in the Archimedean case (using the algebraic definition) but not obvious in the non-Archimedean case.

We provide two applications of those results:

  • a non-Archimedean analog of the results of [Say] concerning Gel’fand property of nice symmetric pairs

  • a proof of multiplicity one theorems for GL n which is uniform for all local fields. This theorem was proven for the non-Archimedean case in [AGRS] and for the Archimedean case in [AG4] and [SZ].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aizenbud and D. Gourevitch, Schwartz functions on Nash manifolds, International Mathematics Research Notices 2008 (2008), rnm155-37 DOI: 10.1093/imrn/rnm155. See also arXiv:0704.2891 [math.AG].

  2. A. Aizenbud and D. Gourevitch (with an appendix by A. Aizenbud, D. Gourevitch and E. Sayag), Generalized Harish-Chandra descent, Gel’fand pairs and an Archimedean analog of Jacquet-Rallis’Theorem, Duke Mathematical Journal 149 (2009), 509–567. See also arXiv: 0812.5063[math.RT].

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Aizenbud and D. Gourevitch, Some regular symmetric pairs, Transactions of the American Mathematical Society 362 (2010), 3757–3777. See also arXiv:0805.2504 [math.RT].

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Aizenbud and D. Gourevitch, Multiplicity one theorem for (GL n+1(ℝ),GL n(ℝ)), Selecta Mathematica Journal 15 (2009), 271–294. see also arXiv:0808.2729v1 [math.RT].

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Aizenbud, D. Gourevitch, S. Rallis and G. Schiffmann, Multiplicity one theorems, Annals of Mathematics 172 (2010), 1407–1434. arXiv:0709.4215v1 [math.RT].

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Aizenbud, D. Gourevitch and E. Sayag, (GL n+1(F), GLn(F)) is a Gel’fand pair for any local field F, Compositio Mathematica 144 (2008), 1504–1524. See also arXiv:0709.1273v3 [math.RT].

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Aizenbud and E. Sayag, Invariant distributions on non-distinguished nilpotent orbits with application to the Gel’fand property of (GL(2n,R),Sp(2n,R)), arXiv:0810.1853 [math.RT].

  8. E. E. H. Bosman and G. Van Dijk, A new class of Gel’fand pairs, Geometriae Dedicata 50 (1994), 261–282.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bernstein, P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-archimedean case), in Lie Group Representations, II (College Park, Md., 1982/1983), Lecture Notes in Mathematics 1041, Springer, Berlin, 1984, pp. 50–102.

    Chapter  Google Scholar 

  10. J. Bernstein and A. V. Zelevinsky, Representations of the group GL(n, F), where F is a local non-Archimedean field, Rossiĭskaya Akademiya Nauk 10, (1976), 5–70.

    Google Scholar 

  11. O. Gabber, The integrability of the characteristic variety, American Journal of Mathematics 103 (1981), 445–468.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. M. Gelfand and D. A. Kajdan, Representations of the group GL(n,K) where K is a local field, in Lie Groups and their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, 1975, pp. 95–118.

    Google Scholar 

  13. B. Gross, Some applications of Gelfand pairs to number theory, American Mathematical Society Bulletin 24 (1991), 277–301.

    Article  MATH  Google Scholar 

  14. D. B. Heifetz, p-adic oscillatory integrals and wave front sets, Pacific Journal of Mathematics 116 (1985), 285–305.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kashiwara, T. Kawai and M. Sato, Hyperfunctions and pseudo-differential equations (Katata, 1971), Lecture Notes in Mathematics 287, Springer, Berlin, 1973, pp. 265–529.

    Google Scholar 

  16. B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, American Journal of Mathematics 93 (1971), 753–809.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Levasseur and J. T. Stafford, Invariant differential operators on the tangent space of some symmetric spaces, Annales de l℉Institut Fourier 49 (1999), 1711–1741.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Malgrange L’involutivite des caracteristiques des systemes differentiels et microdifferentiels, Séminaire Bourbaki 30è Année (1977/78), Lecture Notes in Mathematics 710, Springer, Berlin, 1979.

    Google Scholar 

  19. van Dijk, On a class of generalized Gel’fand pairs, Mathematische Zeitschrift 193 (1986), 581–593.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Sekiguchi, Invariant spherical hyperfunctions on the tangent space of a symmetric space, in Algebraic Groups and Related Topics, Advanced Studies in Pure Mathematics 6, 1985, pp. 83–126.

    MathSciNet  Google Scholar 

  21. E. Sayag, Regularity of invariant distributions on nice symmetric spaces and Gel_fand property of symmetric pairs, preprint.

  22. B. Sun, Multiplicity one theorems for Fourier-Jacobi models, arxiv:0903.1417.

  23. B. Sun and C.-B. Zhu, Multiplicity one theorems: the archimedean case, arxiv:0903.1413.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Aizenbud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenbud, A. A partial analog of the integrability theorem for distributions on p-adic spaces and applications. Isr. J. Math. 193, 233–262 (2013). https://doi.org/10.1007/s11856-012-0088-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0088-y

Keywords

Navigation