Skip to main content
Log in

On fixed point theorems and nonsensitivity

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Sensitivity is a prominent aspect of chaotic behavior of a dynamical system. We study the relevance of nonsensitivity to fixed point theory in affine dynamical systems. We prove a fixed point theorem which extends Ryll-Nardzewski’s theorem and some of its generalizations. Using the theory of hereditarily nonsensitive dynamical systems we establish left amenability of Asp(G), the algebra of Asplund functions on a topological group G (which contains the algebra WAP(G) of weakly almost periodic functions). We note that, in contrast to WAP(G) where the invariant mean is unique, for some groups (including the integers) there are uncountably many invariant means on Asp(G). Finally, we observe that dynamical systems in the larger class of tame G-systems need not admit an invariant probability measure, and the algebra Tame(G) is not left amenable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic? in Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State University Mathematical Research Institute Publications 5, de Gruyter, Berlin, 1996, pp. 25–40.

    Chapter  Google Scholar 

  2. J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on Semigroups, Wiley, New York, 1989.

    MATH  Google Scholar 

  3. R. Ellis, The Furstenberg structure theorem, Pacific Journal of Mathematics 76 (1978), 345–349.

    MathSciNet  MATH  Google Scholar 

  4. H. Furstenberg, The structure of distal flows, American Journal of Mathematics 85 (1963), 477–515.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Glasner, Compressibility properties in topological dynamics, American Journal of Mathematics 97 (1975), 148–171.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Glasner, Proximal Flows, Lecture Notes in Mathematics 517, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  7. E. Glasner, On tame dynamical systems, Colloquium Mathematicum 105 (2006), 283–295.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Glasner, Enveloping semigroups in topological dynamics, Topology and its Applications 154 (2007), 2344–2363.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Glasner and M. Megrelishvili, Linear representations of hereditarily non-sensitive dynamical systems, Colloquium Mathematicum 104 (2006), 223–283.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Glasner, M. Megrelishvili and V. V. Uspenskij, On metrizable enveloping semigroups, Israel Journal of Mathematics 164 (2008), 317–332.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Glasner and M. Megrelishvili, Representations of dynamical systems on Banach spaces not containing l 1, Transactions of the American Mathematical Society, to appear. ArXiv e-print: 0803.2320.

  12. E. Glasner and M. Megrelishvili, Operator compactifications of dynamical systems and geometry of Banach spaces, in preparation.

  13. E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), 1067–1075.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Glasner and B. Weiss, Locally equicontinuous dynamical systems, Colloquium Mathematicum 84/85, Part 2 (2000), 345–361.

    MathSciNet  Google Scholar 

  15. A. Granas and J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003.

    MATH  Google Scholar 

  16. F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Mathematical Studies 16, 1969.

  17. F. Hahn, A fixed-point theorem, Mathematical Systems Theory 1 (1968), 55–57.

    Article  Google Scholar 

  18. G. Hansel and J. P. Troallic, Demonstration du theoreme de point fixe de Ryll-Nardzewski extension de la methode de F. Hahn, Comptes Rendus Hebdomadaires des Seances de l’Académie des Sciences. Séries A et B 282 (1976), 857–859.

    MathSciNet  MATH  Google Scholar 

  19. J. Isbell, Uniform Spaces, Mathematical Surveys 12, American Mathematical Society, Providence, RI, 1964.

    MATH  Google Scholar 

  20. J. E. Jayne and C. A. Rogers, Borel selectors for upper semicontinuous set-valued maps, Acta Mathematica 155 (1985), 41–79.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Megrelishvili, Fragmentability and continuity of semigroup actions, Semigroup Forum 57 (1998), 101–126.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Megrelishvili, Fragmentability and representations of flows, Topology Proceedings, 27:2 (2003), 497–544. See also: www.math.biu.ac.il/~megereli

    MathSciNet  MATH  Google Scholar 

  23. I. Namioka, Neighborhoods of extreme points, Israel Journal of Mathematics 5 (1967), 145–152.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Namioka, Right topological groups, distal flows and a fixed point theorem, Mathematical Systems Theory 6 (1972), 193–209.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Namioka, Separate continuity and joint continuity, Pacific Journal of Mathematics 51 (1974), 515–531.

    MathSciNet  MATH  Google Scholar 

  26. I. Namioka, Affine flows and distal points, Mathematische Zeitschrift 184 (1983), 259–269.

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), 258–281.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Namioka, Kakutani type fixed point theorems: A survey, Journal of Fixed Point Theory and its Applications 9 (2011), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski’s fixed-point theorem, American Mathematical Society. Bulletin 73 (1967), 443–445.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Mathematical Journal 42 (1975), 735–750.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, in Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, University of California Press, Berkeley, Cal., 1967, pp. 55–61.

    Google Scholar 

  32. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New-York, 1984.

    Google Scholar 

  33. W. A. Veech, A fixed point theorem-free approach to weak almost periodicity, Transactions of the American Mathematical Society 177 (1973), 353–362.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Glasner.

Additional information

This research was partially supported by Grant No 2006119 from the United States-Israel Binational Science Foundation (BSF).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasner, E., Megrelishvili, M. On fixed point theorems and nonsensitivity. Isr. J. Math. 190, 289–305 (2012). https://doi.org/10.1007/s11856-011-0192-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0192-4

Keywords

Navigation