Skip to main content
Log in

Pointwise convergence of multiple ergodic averages and strictly ergodic models

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

By building some suitable strictly ergodic models, we prove that for an ergodic system \((X, \mathcal{X}, \mu, T), d \in \mathbb{N}, f_1, \ldots, f_d \in L^\infty(\mu)\), the averages

$$\frac{1}{{{N^2}}}\sum\limits_{(n,m) \in {{[0,N - 1]}^2}} {{f_1}({T^n}x){f_2}({T^{n + m}}x) \cdots {f_d}({T^{n + (d - 1)m}}x)}$$

converge to a constant μ a.e.

Deriving some results from the construction, for distal systems we answer positively the question if the multiple ergodic averages converge a.e. That is, we show that if \((X, \mathcal{X}, \mu, T)\) is an ergodic distal system, and f1, …, fdL(μ), then the multiple ergodic averages

$$\frac{1}{N}\sum\limits_{n = 0}^{N - 1} {{f_1}({T^n}x) \cdots {f_d}({T^{dn}}x)}$$

converge μ a.e.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Assani, Multiple recurrence and almost sure convergence for weakly mixing dynamical systems, Israel J. Math. 103 (1998), 111–124.

    MathSciNet  MATH  Google Scholar 

  2. I. Assani, Pointwise convergence of ergodic averages along cubes, J. Anal. Math. 110 (2010), 241–269.

    MathSciNet  MATH  Google Scholar 

  3. T. Austin, On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems 30 (2010), 321–338.

    MathSciNet  MATH  Google Scholar 

  4. A. Bellow and H. Furstenberg, An application of number theory to ergodic theory and the construction of uniquely ergodic models, Israel J. Math. 33 (1979), 231–240.

    MathSciNet  MATH  Google Scholar 

  5. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), 337–349.

    MathSciNet  MATH  Google Scholar 

  6. V. Bergelson. The multifarious Poincare recurrence theorem, in Descriptive Set Theory and Dynamical Systems, Cambridge University Press, Cambridge, 2000, pp. 31–57.

    Google Scholar 

  7. V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences. With an appendix by Imre Ruzsa, Invent. Math. 160 (2005), 261–303.

    MathSciNet  MATH  Google Scholar 

  8. J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew. Math. 404 (1990), 140–161.

    MathSciNet  MATH  Google Scholar 

  9. Q. Chu and N. Frantzikinakis, Pointwise convergence for cubic and polynomial ergodic averages of non-commuting transformations, Ergodic Theory Dynam. Systems 32 (2012), 877–897.

    MathSciNet  MATH  Google Scholar 

  10. M. Denker, On strict ergodicity, Math. Z. 134 (1973), 231–253.

    MathSciNet  MATH  Google Scholar 

  11. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Springer-Verlag, Berlin-New York, 1976.

    MATH  Google Scholar 

  12. J. Derrien and E. Lesigne, Un théorème ergodique polynomial ponctuel pourles endomorphismes exacts et les K-systèmes, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 765–778.

    MathSciNet  MATH  Google Scholar 

  13. P. Dong, S. Donoso, A. Maass, S. Shao and X. Ye, Infinite-step nilsystems, independence and complexity, Ergodic Theory Dynam. Systems 33 (2013), 118–143.

    MathSciNet  MATH  Google Scholar 

  14. S. Donoso and W. Sun, Pointwise convergence of some multiple ergodic averages, Adv. Math. 330 (2018), 946–996.

    MathSciNet  MATH  Google Scholar 

  15. T. Downarowicz and Y. Lacroix, Forward mean proximal pairs and zero entropy, Israel J. Math. 191 (2012), 945–957.

    MathSciNet  MATH  Google Scholar 

  16. M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer-Verlag, London, 2011.

    MATH  Google Scholar 

  17. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.

    MATH  Google Scholar 

  18. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.

    MATH  Google Scholar 

  19. E. Glasner, Topological ergodic decompositions and applications to products of powers of a minimal transformation, J. Anal. Math. 64 (1994), 241–262.

    MathSciNet  MATH  Google Scholar 

  20. E. Glasner, Ergodic Theory via Joinings, American Mathematical Society, Providence, RI, 2003.

    MATH  Google Scholar 

  21. E. Glasner and B. Weiss, Strictly ergodic, uniform positive entropy models, Bull. Soc. Math. France 122 (1994), 399–412.

    MathSciNet  MATH  Google Scholar 

  22. E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics, in Handbook of dynamical systems. Vol. 1B, Elsevier, Amsterdam, 2006, pp. 597–648.

    Google Scholar 

  23. G. Hansel and J. P. Raoult, Ergodicity, uniformity and unique ergodicity, Indiana Univ. Math. J. 23 (1973/74), 221–237.

    MathSciNet  MATH  Google Scholar 

  24. M. Hochman, On notions of determinism in topological dynamics, Ergodic Theory Dynam. Systems 32 (2012), 119–140.

    MathSciNet  MATH  Google Scholar 

  25. B. Host, Ergodic seminorms for commuting transformations and applications, Studia Math. 195 (2009), 31–49.

    MathSciNet  MATH  Google Scholar 

  26. B. Host and B. Kra, Nonconventional averages and nilmanifolds, Ann. of Math. 161 (2005), 398–488.

    MathSciNet  MATH  Google Scholar 

  27. B. Host, B. Kra and A. Maass, Nilsequences and a structure theory for topological dynamical systems, Adv. Math. 224 (2010), 103–129.

    MathSciNet  MATH  Google Scholar 

  28. W. Huang, S. Shao and X. Ye, Strictly ergodic models and pointwise ergodic averages for cubes, Commun. Math. Stat. 5 (2017), 93–122.

    MathSciNet  Google Scholar 

  29. R. I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech. 19 (1969/1970), 717–729.

    MathSciNet  MATH  Google Scholar 

  30. W. Krieger, On unique ergodicity, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory, University of California Press, Berkeley, CA, 1972, pp. 327–346.

    Google Scholar 

  31. E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math. 57 (1987), 239–255.

    MathSciNet  MATH  Google Scholar 

  32. A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of rotations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), 201–213.

    MathSciNet  MATH  Google Scholar 

  33. E. Lesigne, Théorèmes ergodiques ponctuels pour des mesures diagonales, Cas des systèmes distaux, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 593–612.

    MathSciNet  MATH  Google Scholar 

  34. E. Lindenstrauss, Measurable distal and topological distal systems, Ergodic Theory Dynam. Systems 19 (1999), 1063–1076.

    MathSciNet  MATH  Google Scholar 

  35. E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), 259–295.

    MathSciNet  MATH  Google Scholar 

  36. W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771.

    MathSciNet  MATH  Google Scholar 

  37. S. Shao and X. Ye, Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence, Adv. Math. 231 (2012), 1786–1817.

    MathSciNet  MATH  Google Scholar 

  38. T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems 28 (2008), 657–688.

    MathSciNet  MATH  Google Scholar 

  39. V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191–220.

    MathSciNet  MATH  Google Scholar 

  40. M. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2) 175 (2012), 1667–1688.

    MathSciNet  MATH  Google Scholar 

  41. B. Weiss, Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 143–146.

    MathSciNet  MATH  Google Scholar 

  42. B. Weiss, Countable generators in dynamics — Universal minimal models, in Measure and Measurable Dynamics (Rochester, NY, 1987), American Mathematical Soceity, Providence, RI, 1989, pp. 321–326.

    Google Scholar 

  43. B. Weiss, Multiple recurrence and doubly minimal systems, in Topological Dynamics and Applications (Minneapolis, MN, 1995), American Mathematical Society, Providence, RI, 1998, pp. 189–196.

    Google Scholar 

  44. B. Weiss, Single Orbit Dynamics, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  45. T. Ziegler, A non-conventional ergodic theoremfor a nilsystem, Ergodic Theory Dynam. Systems 25 (2005), 1357–1370.

    MathSciNet  MATH  Google Scholar 

  46. T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53–97.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Ye.

Additional information

Authors are supported by NNSF of China (11225105, 11371339, 11431012, 11571335) and by “The Fundamental Research Funds for the Central Universities”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Shao, S. & Ye, X. Pointwise convergence of multiple ergodic averages and strictly ergodic models. JAMA 139, 265–305 (2019). https://doi.org/10.1007/s11854-019-0061-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0061-3

Navigation