Skip to main content
Log in

Bounds on short character sums and L-functions with characters to a powerful modulus

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We combine a classical idea of Postnikov (1956) with the method of Korobov (1974) for estimating double Weyl sums, deriving new bounds on short character sums when the modulus q has a small core Πp|qp. Using this estimate, we improve certain bounds of Gallagher (1972) and Iwaniec (1974) for the corresponding L-functions. In turn, this allows us to improve the error term in the asymptotic formula for primes in short arithmetic progressions modulo a power of a fixed prime. As yet another application of our bounds, we substantially extend the classical zero-free region (which might include Siegel zeros). Finally, we improve the previous best value \(L=\frac{12}{5}=2.2\) of the Linnik constant for primes in arithmetic progressions modulo powers of a fixed prime to L < 2.1115.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain, C. Demeter and L. Guth, Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. of Math. (2) 184 (2016), 633–682.

    Article  MathSciNet  Google Scholar 

  2. M.-C. Chang, Short character sums for composite moduli, J. Anal. Math. 123 (2014), 1–33.

    Article  MathSciNet  Google Scholar 

  3. L. De Feo, D. Jao and J. Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, J. Math. Crypto8 (2014), 209–247.

    Article  MathSciNet  Google Scholar 

  4. K. Ford, Vinogradov’s integral and bounds for the Riemann zeta function, Proc. Lond. Math. Soc. (3) 85 (2002), 565–633.

    Article  MathSciNet  Google Scholar 

  5. P. X. Gallagher, Primes in progressions to prime-power modulus, Invent. Math. 16 (1972), 191–201.

    Article  MathSciNet  Google Scholar 

  6. A. Granville and K. Soundararajan, Upper bounds for |L(1, χ)|, Q. J. Math. 53 (2002), 265–284.

    Article  MathSciNet  Google Scholar 

  7. B. Green, On (not) computing the möbius function using bounded depth circuits, Combin. Prob. Comp. 21 (2012), 942–951.

    Article  Google Scholar 

  8. G. Harman, Watt’s mean value theorem and Carmichael numbers, Int. J. Number Theory 4 (2008), 41–248.

    Article  MathSciNet  Google Scholar 

  9. G. Harman and I. Kátai, Primes with preassigned digits. II, Acta Arith. 133 (2008), 171–184.

    Article  MathSciNet  Google Scholar 

  10. M. N. Huxley, Large values of Dirichlet polynomials. III, Acta Arith. 26 (1974), 435–444.

    Article  MathSciNet  Google Scholar 

  11. H. Iwaniec, On zeros of Dirichlet’s L series, Invent. Math. 23 (1974), 97–104.

    Article  MathSciNet  Google Scholar 

  12. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  13. S. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time, in The Mathematics of Paul Erdős, Vol. 1, Springer, New York, 2013, pp. ]159–186.

    Chapter  Google Scholar 

  14. N. M. Korobov, The distribution of digits in periodic fractions, Math. USSR-Sb. 18 (1974), 659–676.

    Article  Google Scholar 

  15. D. Milićević, Sub-Weyl subconvexity for Dirichlet L-functions to powerful moduli, Compos. Math. 152 (2016), 825–875.

    Article  MathSciNet  Google Scholar 

  16. A. G. Postnikov, On the sum of characters with respect to a modulus equal to a power of a prime number, Izv. Akad. Nauk SSSR. Ser. Mat. 19 (1955), 11–16.

    MathSciNet  Google Scholar 

  17. A. G. Postnikov, On Dirichlet L-series with the character modulus equal to the power of a prime number, J. Indian Math. Soc. 20 (1956), 217–226.

    MathSciNet  MATH  Google Scholar 

  18. I. M. Vinogradov, The upper bound of the modulus of a trigonometric sum, Izv. Akad. Nauk SSSR. Ser. Mat. 14 (1950), 199–214.

    MathSciNet  MATH  Google Scholar 

  19. I. M. Vinogradov, General theorems on the upper bound of the modulus of a trigonometric sum, Izv. Akad. Nauk SSSR. Ser. Mat. 15 (1951), 109–130.

    MathSciNet  MATH  Google Scholar 

  20. T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing, Ann. of Math. (2) 175 (2012), 1575–1627.

    Article  MathSciNet  Google Scholar 

  21. T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing, II, Duke Math. J. 162 (2013), 673–730.

    Article  MathSciNet  Google Scholar 

  22. T. D. Wooley, Multigrade efficient congruencing and Vinogradov’s mean value theorem, Proc. Lond. Math. Soc. (3) 111 (2015), 519–560.

    Article  MathSciNet  Google Scholar 

  23. B. Źrałek, Using partial smoothness of p − 1 for factoring polynomials modulo p, Math. Comp. 79 (2010), 2353–2359.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Glyn Harman for various discussions concerning [8, Theorem 1.2]. We also thank the anonymous referee for numerous important comments and suggestions.

The first author was supported in part by a grant from the University ofMissouri Research Board. The second author was supported by ARC Grant DP170100786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Shparlinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks, W.D., Shparlinski, I.E. Bounds on short character sums and L-functions with characters to a powerful modulus. JAMA 139, 239–263 (2019). https://doi.org/10.1007/s11854-019-0060-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0060-4

Navigation