Skip to main content
Log in

Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Cloaking a source via anomalous localized resonance (ALR) was discovered by Milton and Nicorovici in [15]. A general setting in which cloaking a source via ALR takes place is the setting of doubly complementary media. This was introduced and studied in [20] for the quasistatic regime. In this paper, we study cloaking a source via ALR for doubly complementary media in the finite frequency regime. To this end, we establish the following results: (1) Cloaking a source via ALR appears if and only if the power blows up; (2) The power blows up if the source is “placed” near the plasmonic structure; (3) The power remains bounded if the source is far away from the plasmonic structure. Concerning the analysis, on one hand we extend ideas from [20] and on the other hand we add new insights into the problem. This allows us to not only overcome difficulties related to the finite frequency regime but to also obtain new information on the problem. In particular, we are able to characterize the behavior of fields far enough from the plasmonic shell, as the loss approaches 0 for an arbitrary source outside the core-shell structure in the doubly complementary media setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems 25 (2009), 123004.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Alu and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 95 (2005), 106623.

    Google Scholar 

  3. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G. W. Milton, Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), 20130048.

    Article  MATH  Google Scholar 

  4. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G. W. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal. 218 (2013), 667–692.

    Article  MATH  Google Scholar 

  5. F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vortices, Birkhäuser Boston, Boston, MA, 1994.

    Book  MATH  Google Scholar 

  6. G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math. 63 (2010), 437–463.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Chesnel, A. S. Bonnet-Ben Dhia and P. Ciarlet, T-coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM Math. Model. Numer. Anal. 46 (2012), 1363–1387.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  9. M. Costabel and S. Ernst, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 106 (1985), 367–413.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Droxler, J. Hesthaven and H-M. Nguyen, unpublished note.

  11. H. Kettunen, M. Lassas and P. Ola, On absence and existence of the anomalous localized resonance without the quasi-static approximation, SIAM J. Appl. Math. 78 (2019), 609–628.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. V. Kohn, J. Lu, B. Schweizer and M. I. Weinstein, A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys. 328 (2014), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Lai, H. Chen, Z. Zhang and C. T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett. 102 (2009), 093901.

    Article  Google Scholar 

  14. G. W. Milton, N. A. Nicorovici, R. C. McPhedran and V. A. Podolskiy, A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), 3999–4034.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. W. Milton and N. A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), 3027–3059.

    Article  MathSciNet  MATH  Google Scholar 

  16. H-M. Nguyen, Cloaking via change of variables for the Helmholtz equation in the whole spaces, Comm. Pure Appl. Math. 63 (2010), 1505–1524.

    Article  MathSciNet  MATH  Google Scholar 

  17. H-M. Nguyen, Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients, Trans. Amer. Math. Soc. 367 (2015), 6581–6595.

    Article  MathSciNet  MATH  Google Scholar 

  18. H-M. Nguyen, Superlensing using complementary media, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 471–484.

    Article  MathSciNet  MATH  Google Scholar 

  19. H-M. Nguyen, Cloaking via anomalous localized resonance. A connection between the localized resonance and the blow up of the power for doubly complementary media, C. R. Math. Acad. Sci. Paris 353 (2015), 41–46.

    Article  MathSciNet  MATH  Google Scholar 

  20. H-M. Nguyen, Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime, J. Eur. Math. Soc. (JEMS) 17 (2015), 1327–1365.

    Article  MathSciNet  MATH  Google Scholar 

  21. H-M. Nguyen, Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 1509–1518.

    Article  MathSciNet  MATH  Google Scholar 

  22. H-M. Nguyen, Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl. 106 (2016), 342–374.

    Article  MathSciNet  MATH  Google Scholar 

  23. H-M. Nguyen, Superlensing using complementary media and reflecting complementary media for electromagnetic waves, Adv. Nonlinear Anal. 7 (2018), 449–467.

    Article  MathSciNet  MATH  Google Scholar 

  24. H-M. Nguyen, Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object, SIAM J. Math. Anal. 49 (2017), 3208–3232.

    Article  MathSciNet  MATH  Google Scholar 

  25. H-M. Nguyen and H. L. Nguyen, Complete resonance and localized resonance in plasmonic structures, ESAIM: Math. Model. Numer. Anal. 49 (2015), 741–754.

    Article  MathSciNet  MATH  Google Scholar 

  26. H-M. Nguyen and H. L. Nguyen, Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc. Ser. B 2 (2015), 93–112.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. A. Nicorovici, R. C. McPhedran and G. W. Milton, Optical and dielectric properties of partially resonant composites, Phys. Rev. B 49 (1994), 8479–8482.

    Article  Google Scholar 

  28. M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc. 95 (1960), 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. A. Shelby, D. R. Smith and S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001), 77–79.

    Article  Google Scholar 

  30. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Usp. Fiz. Nauk 92 (1964), 517–526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai-Minh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HM. Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime. JAMA 138, 157–184 (2019). https://doi.org/10.1007/s11854-019-0024-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0024-8

Navigation