Skip to main content
Log in

Complexity of nilsystems and systems lacking nilfactors

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Nilsystems are a natural generalization of rotations and arise in various contexts, including in the study of multiple ergodic averages in ergodic theory, in the structural analysis of topological dynamical systems, and in asymptotics for patterns in certain subsets of the integers. We show, however, that many natural classes in both measure preserving systems and topological dynamical systems contain no higher order nilsystems as factors, meaning that the only nilsystems they contain as factors are rotations. Our main result is that in the topological setting, nilsystems have a particular type of complexity of polynomial growth, where the polynomial (with explicit degree) is an asymptotic both from below and above. We also deduce several ergodic and topological applications of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Auslander, L. Green, and F. Hahn, Flows on Homogeneous Spaces, Princeton University Press, Princeton, N.J., 1963.

    MATH  Google Scholar 

  2. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), 337–349.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Bergelson, B. Host, and B. Kra, with an appendix by I. Ruzsa, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), 261–303.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Bergelson, A. Leibman, and E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem, Adv. Math. 219 (2008), 369–388.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Blanchard, B. Host, and A. Maass, Topological complexity, Ergodic Theory Dynam. Systems 20 (2000), 641–662.

    Article  MATH  MathSciNet  Google Scholar 

  6. X. Bressaud, F. Durand, and A. Maass, On the eigenvalues of finite rank Bratteli-Vershik dynamical systems, Ergodic Theory Dynam. Systems 30 (2010), 639–664.

    Article  MATH  MathSciNet  Google Scholar 

  7. Q. Chu, Convergence of weighted polynomial multiple ergodic averages, Proc. Amer. Math. Soc. 137 (2009), 1363–1369.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems 20 (2000), 1061–1078.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Dong, S. Donoso, A. Maass, S. Shao, and X. Ye, Infinite-step nilsystems, independence and complexity, Ergodic Theory Dynam. Systems 33 (2013), 118–143.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Ferenczi, Systèmes localement de rang un, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), 35–51.

    MATH  MathSciNet  Google Scholar 

  11. S. Ferenczi, Systèmes de rang un gauche, Ann. Inst. H. Poincaré Probab. Statist. 21 (1985), 177–186.

    MATH  MathSciNet  Google Scholar 

  12. S. Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems 16 (1996), 663–682.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Ferenczi Measure-theoretic complexity of ergodic systems, Israel J. Math. 100 (1997), 189–207.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Frantzikinakis, Multiple ergodic averages for three polynomials and applications, Trans. Amer. Math. Soc. 360 (2008), 5435–5475.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Frantzikinakis, Multiple recurrence and convergence for Hardy field sequences of polynomial growth, J. Anal. Math. 112 (2010), 79–135.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Frantzikinakis and B. Kra, Ergodic averages for independent polynomials and applications, J. Lond. Math. Soc. (2) 74 (2006), 131–142.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Frantzikinakis and M. Wierdl, A Hardy field extension of Szemerédi’s theorem, Adv. Math. 222 (2009), 1–43.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Gjerde and Ø. Johansen, Bratteli-Vershik models for Cantor minimal systems associated to interval exchange transformations, Math. Scand. 90 (2002), 87–100.

    MATH  MathSciNet  Google Scholar 

  19. B. Green and T. Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), 1753–1850.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397–488.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Host and B. Kra, Uniformity seminorms on ℓ and applications, J. Anal. Math. 108 (2009), 219–276.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Host, B. Kra, and A. Maass, Nilsequences and a topological structure theorem, Adv. Math. 224 (2010), 103–129.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), 323–338.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Leibman, Polynomial sequences in groups, J. Algebra 201 (1998), 189–206.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), 201–213.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303–316.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 1951 (1951), no. 39.

  29. D. Ornstein, D. Rudolph, and B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 37 (1982), no. 262.

    MathSciNet  Google Scholar 

  30. W. Parry, Dynamical systems on nilmanifolds, Bull. London Math. Soc. 2 (1970), 37–40.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Queffélec, Substitution Dynamical Systems — Spectral Analysis, second edition, Springer-Verlag, Berlin, 2010.

    Book  MATH  Google Scholar 

  32. S. Shao and X. Ye, Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence, Adv. Math. 231 (2012), 1786–1817.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. N. Starkov Dynamical Systems on Homogeneous Spaces, American Mathematical Society, Providence, RI, 2000.

    Google Scholar 

  34. A.M. Stepin, Flows on solvable manifolds, Upekhi Mat. Nauk 24 (1969), 241–242.

    MATH  MathSciNet  Google Scholar 

  35. P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York-Berlin, 1982.

    Book  MATH  Google Scholar 

  36. H. Weyl, Úber die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313–352.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Host.

Additional information

Partially supported by NSF grant 1200971

Partially supported by Fondap 15090007 and CMM-Basal grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Host, B., Kra, B. & Maass, A. Complexity of nilsystems and systems lacking nilfactors. JAMA 124, 261–295 (2014). https://doi.org/10.1007/s11854-014-0032-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0032-7

Keywords

Navigation