Skip to main content
Log in

Large values of the Gowers-Host-Kra seminorms

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The Gowers uniformity norms \({\left\| f \right\|_{{U^k}(G)}}\) of a function f: GC on a finite additive group G, together with the slight variant \({\left\| f \right\|_{{U^k}([N])}}\) defined for functions on a discrete interval [N]:= {1, ...,N}, are of importance in the modern theory of counting additive patterns (such as arithmetic progressions) inside large sets. Closely related to these norms are the Gowers-Host-Kra seminorms \({\left\| f \right\|_{{U^k}(X)}}\) of a measurable function f: XC on a measure-preserving system X = (X,X,µ, T). Much recent effort has been devoted to the question of obtaining necessary and sufficient conditions for these Gowers norms to have non-trivial size (e.g., at least η for some small η > 0), leading in particular to the inverse conjecture for the Gowers norms and to the Host-Kra classification of characteristic factors for the Gowers-Host-Kra seminorms.

In this paper, we investigate the near-extremal (or “property testing”) version of this question, when the Gowers norm or Gowers-Host-Kra seminorm of a function is almost as large as it can be, subject to an L or L p bound on its magnitude. Our main results assert, roughly speaking, that this occurs if and only if f behaves like a polynomial phase, possibly localised to a subgroup of the domain; these results can be viewed as higher-order analogues of a classical result of Russo [29] and Fournier [10], and are also related to the polynomiality testing results over finite fields of Blum-Luby-Rubinfeld [6] and Alon-Kaufman-Krivelevich-Litsyn-Ron [1]. We investigate the situation further for the U 3 norms, which are associated to 2-step nilsequences, and find that there is a threshold behaviour, in that non-trivial 2-step nilsequences (not associated with linear or quadratic phases) only emerge once the U 3 norm is at most 2−1/8 of the L norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn and D. Ron, Testing low-degree polynomials over GF(2), Approximation, Randomization and Combinatorial Optimization, Springer, Berlin, 2003, pp. 188–199. Also: Testing Reed-Muller codes, IEEE Trans. Inform. Theory 51 (2005), 4032–4039.

    Google Scholar 

  2. F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335–361.

    Article  MathSciNet  Google Scholar 

  3. F. Barthe, Optimal Young’s inequality and its converse: a simple proof, Geom. Funct. Anal. 8 (1998), 234–242.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), 159–182.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Bergelson, T. C. Tao, and T. Ziegler, An inverse theorem for uniformity seminorms associated with the action of F ω, Geom. Funct. Anal. 19 (2010), 1539–1596.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical problems, J. Comput. System Sci. 47 (1993), 549–595.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. J. Brascamp and E. H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), 151–173.

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Camarena and B. Szegedy, Nilspaces, nilmanifolds and their morphisms, preprint, arXiv:1009.3825.

  9. J. P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, C. R. Acad. Sci. Paris Sér I Math. 306 (1988), 491–493.

    MathSciNet  MATH  Google Scholar 

  10. J. J. K. Fournier, Sharpness in Young’s inequality for convolution, Pacific J. Math. 72 (1977), 383–397.

    MathSciNet  MATH  Google Scholar 

  11. H. Furstenberg, Recurrence in Ergodic theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.

    MATH  Google Scholar 

  12. H. Furstenberg, Nonconventional ergodic averages, The Legacy of John von Neumann (Hempstead, NY, 1988), Amer. Math. Soc., Providence, RI, 1990, pp. 43–56.

    Google Scholar 

  13. H. Furstenberg and B. Weiss, A mean ergodic theorem for \({1 \over N}\sum\nolimits_{n = 1}^N {f({T^n}x)g({T^{{n^2}}}x)} \), Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), de Gruyter, Berlin, 1996, pp. 193–227.

  14. W. T. Gowers, A new proof of Szemerédi’s theorem for progressions of length four, Geom. Funct. Anal. 8 (1998), 529–551.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), 481–547.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Green and T. Tao, An inverse theorem for the Gowers U 3(G) norm, Proc. Edinb. Math. Soc. (2) 51 (2008), 73–153.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Green and T. Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), 1753–1850.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), 465–540.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Green and T. Tao, An arithmetic regularity lemma, an associated counting lemma, and applications, An Irregular Mind, János Bolyai Math. Soc., Budapest, 2010, pp. 261–334.

  21. B. Green, T. Tao, and T. Ziegler, An inverse theorem for the Gowers U s+1[N] norm, Electron. Res. Announc. Math. Sci. 18 (2011), 69–90.

    MathSciNet  MATH  Google Scholar 

  22. B. Host and B. Kra, Convergence of Conze-Lesigne Averages, Ergodic Theory Dynam. Systems 21 (2001), 493–509.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397–488.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Host and B. Kra, Parallelepipeds, nilpotent groups, and Gowers norms, Bull. Soc. Math. France 136 (2008), 405–437.

    MathSciNet  MATH  Google Scholar 

  25. B. Host and B. Kra, Analysis of two step nilsequences, Ann. Inst. Fourier (Grenoble) 58 (2008), 1407–1453.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Host and B. Kra, Uniformity norms on ℓ and applications, J. Anal. Math. 108 (2009), 219–276.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Host and B. Kra, A point of view on Gowers uniformity norms, New York J. Math. 18 (2012), 213–248.

    MATH  Google Scholar 

  28. A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), 201–213.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Russo, The norm of the Lp-Fourier transform on unimodular groups, Trans. Amer. Math. Soc. 192 (1974), 293–305.

    MathSciNet  MATH  Google Scholar 

  30. A. Samorodnitsky, Low-degree tests at large distances, STOC’07 — Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 506–515.

  31. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.

    MATH  Google Scholar 

  32. B. Szegedy, Structure of finite nilspaces and inverse theorems for the Gowers norms in bounded exponent groups, preprint. arXiv:1011.1057.

  33. T. Tao, Structure and randomness in combinatorics, Proceedings of the 48th Annual Symposium on Foundations of Computer Science (FOCS), 2007, pp. 3–18.

  34. T. Tao and V. Vu, Additive Combinatorics, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  35. T. Tao and T. Ziegler, The inverse conjecture for the Gowers norm over finite fields via the correspondence principle, Anal. PDE 3 (2010), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Wolf, The minimum number of monochromatic 4-term progressions, www.juliawolf.org/research/preprints/talk280509.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Eisner.

Additional information

T. E. is supported by the European Social Fund and by the Ministry of Science, Research and the Arts Baden-Württemberg.

T. T. is supported by NSF grant DMS-0649473 and a grant from the Macarthur Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisner, T., Tao, T. Large values of the Gowers-Host-Kra seminorms. JAMA 117, 133–186 (2012). https://doi.org/10.1007/s11854-012-0018-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0018-2

Keywords

Navigation