Skip to main content
Log in

Semiclassical second microlocal propagation of regularity and integrable systems

  • Published:
Journal d'Analyse Mathématique Aims and scope

An Erratum to this article was published on 01 June 2011

Abstract

We develop a second-microlocal calculus of pseudodifferential operators in the semiclassical setting. These operators test for Lagrangian regularity of semiclassical families of distributions on a manifold X with respect to a Lagrangian submanifold of T * X. The construction of the calculus, closely analogous to one performed by Bony in the setting of homogeneous Lagrangians, proceeds via the consideration of a model case, that of the zero section of T *n, and conjugation by appropriate Fourier integral operators. We prove a propagation theorem for the associated wavefront set analogous to Hörmander’s theorem for operators of real principal type. As an application, we consider the propagation of Lagrangian regularity on invariant tori for quasimodes (e.g., eigenfunctions) of an operator with completely integrable classical hamiltonian. We prove a secondary propagation result for second wavefront set which implies that even in the (extreme) case of Lagrangian tori with all frequencies rational, provided a nondegeneracy assumption holds, Lagrangian regularity either spreads to fill out a whole torus or holds nowhere locally on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Alexandrova, Semi-classical wavefront set and Fourier integral operators, Canad. J. Math. 60 (2008), 241–263.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. I. Arnol’d, Mathematical Methods of Classical Mechanics, second ed., Springer-Verlag, New York, 1989.

    MATH  Google Scholar 

  3. J.-M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, in Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), Academic Press, Boston, MA, 1986, pp. 11–49.

    Google Scholar 

  4. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-classical Limit, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  5. J. Drumond Silva, An accuracy improvement in Egorov’s theorem, Publ. Mat. 51 (2007), 77–120.

    MATH  MathSciNet  Google Scholar 

  6. J. J. Duistermaat and L. Hörmander, Fourier integral operators, II, Acta Math. 128 (1972), 183–269.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Evans and M. Zworski, Lectures on Semiclassical Analysis, version 0.3, available at http://math.berkeley.edu/zworski/semiclassical.pdf.

  8. V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society, Providence, RI, 1977.

    MATH  Google Scholar 

  9. M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions. I, Ann. Henri Poincaré 5 (2004), 1–73.

    Article  MATH  Google Scholar 

  10. L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math. (2) 17 (1971), 99–163.

    Google Scholar 

  11. L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  12. L. Hörmander, The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators, Springer-Verlag, Berlin, 1994. Corrected reprint of the 1985 original.

    Google Scholar 

  13. E. Horozov, Perturbations of the spherical pendulum and abelian integrals, J. Reine Angew. Math. 408 (1990), 114–135.

    MATH  MathSciNet  Google Scholar 

  14. E. Horozov, On the isoenergetical nondegeneracy of the spherical pendulum, Phys. Lett. A 173 (1993), 279–283.

    Article  MathSciNet  Google Scholar 

  15. A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  16. R. B. Mazzeo, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equations 16 (1991), 1615–1664.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. B. Melrose, A. Vasy, and J. Wunsch, Propagation of singularities for the wave equation on edge manifolds, Duke Math. J. 144 (2008), 109–193.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. B. Melrose, Differential Analysis on Manifolds with Corners, in preparation, available at http://www-math.mit.edu/rbm/book.html

  19. R. B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, in Spectral and Scattering Theory (Sanda, 1992), Dekker, New York, 1994, pp. 85–130.

    Google Scholar 

  20. J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137 (2007), 381–459.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Wunsch, Spreading of Lagrangian regularity on rational invariant tori, Comm. Math. Phys. 279 (2008), 487–496.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Vasy.

Additional information

The authors gratefully acknowledge financial support for this project from the National Science Foundation, the first under grant DMS-0201092, and the second under grant DMS-0700318. The authors thank an anonymous referee for comments that improved the manuscript.

An erratum to this article is available at http://dx.doi.org/10.1007/s11854-011-0033-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasy, A., Wunsch, J. Semiclassical second microlocal propagation of regularity and integrable systems. J Anal Math 108, 119–157 (2009). https://doi.org/10.1007/s11854-009-0020-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-009-0020-5

Keywords

Navigation