Skip to main content
Log in

The corona theorem on the complement of certain square cantor sets

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let K be a square Cantor set, i.e., the Cartesian product K = E × E of two linear Cantor sets. Let δ n denote the proportion of the intervals removed in the nth stage of the construction of E. It is shown that if \( \delta _n = o(\frac{1} {{\log \log n}}) \), then the corona theorem holds on the domain Ω = ℂ* \ K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Alling, A proof of the corona conjecture for finite open Riemann surfaces, Bull. Amer.Math. Soc. 70 (1964), 110–112.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. L. Alling, Extensions of meromorphic function rings over non-compact Riemann surfaces, I, Math. Z. 89 (1965), 273–299.

    Article  MathSciNet  Google Scholar 

  3. D. E. Barrett and J. Diller, A new construction of Riemann surfaces with corona, J. Geom. Anal. 8 (1998), 341–347.

    MATH  MathSciNet  Google Scholar 

  4. M. Behrens, On the corona problem for a class of infinitely connected domains, Bull. Amer. Math. Soc. 76 (1970), 387–391.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Behrens, The maximal ideal space of algebras of bounded anlytic functions on infinitely connected domains, Trans. Amer. Math. Soc. 161 (1971), 358–380.

    Article  MathSciNet  Google Scholar 

  6. B. Berndtsson and T. J. Ransford, Analytic multifunctions the \( \bar \partial \) -equation, and a proof of the corona theorem, Pacific J. Math. 124 (1986), 57–72.

    MATH  MathSciNet  Google Scholar 

  7. L. Carleson, An interpolation theorem or bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559.

    Google Scholar 

  9. L. Carleson, On H in multiply connected domains, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. 2, Wadsworth, Belmont, CA, 1983, pp. 349–372.

    Google Scholar 

  10. W. M. Deeb, A class of infinitely connected domain and the corona, Trans. Amer. Math. Soc. 231 (1977), 101–106.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. M. Deeb and D. R. Wilken, \( \mathcal{D} \) domains and the corona, Trans. Amer. Math. Soc. 231 (1977), 107–115.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. J. Earle and A. Marden, Projections to automorphic functions, Proc. Amer. Math. Soc. 19 (1968), 274–278.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Forelli, Bounded holormorphic functions and projections, Illinois J. Math. 10 (1966), 367–380.

    MATH  MathSciNet  Google Scholar 

  14. T. W. Gamelin, Localization of the corona problem, Pacific J. Math. 34 (1970), 73–81.

    MATH  MathSciNet  Google Scholar 

  15. T. W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969.

    MATH  Google Scholar 

  16. T. W. Gamelin, Uniform Algebras and Jensen Measures, Cambridge University Press, Cambridge, 1978.

    MATH  Google Scholar 

  17. T. W. Gamelin, Wolff’s proof of the corona theorem, Israel J. Math. 37 (1980), 113–119.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. B. Garnett, Analytic Capacity and Measure, Lecture Notes in Mathematics 297, Springer-Verlag, Berlin-New York, 1972.

    Google Scholar 

  19. J. B. Garnett, Bounded Analytic Functions, revised first edition, Springer, NY, 2007.

    Google Scholar 

  20. J. B. Garnett and P. W. Jones, The Corona theorem for Denjoy domains, Acta. Math. 155 (1985), 27–40.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. J. Gonzalez, Uniformly perfect sets, Green’s function, and fundamental domains, Rev. Mat. Iberoamericana 8 (1992), 239–269.

    MATH  MathSciNet  Google Scholar 

  22. L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943–949.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. W. Jones, L estimates for the \( \bar \partial \) problem in a half-plane, Acta Math. 150 (1983), 137–152.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. W. Jones, Some problems in complex analysis, The Bieberbach Conjecture (West Lafayette, Ind., 1985), Amer. Math. Soc., Providence, RI, 1986, pp. 105–108.

    Google Scholar 

  25. P. W. Jones and D. E. Marshall, Critical points of Green’s function, harmonic measure, and the corona problem, Ark. Mat. 23 (1985), 281–314.

    Article  MATH  MathSciNet  Google Scholar 

  26. C. N. Moore, The corona theorem for domains whose boundary lies in a smooth curve, Proc. Amer. Math. Soc. 100 (1987), 266–270

    Article  MATH  MathSciNet  Google Scholar 

  27. Z. Slodkowski, An analytic set-valued selection and its applications to the corona theorem, to polynomial hulls and joint spectra, Trans. Amer. Math. Soc. 294 (1986), 367–377.

    Article  MATH  MathSciNet  Google Scholar 

  28. Z. Slodkowski, On bounded analytic functions in finitely connected domains, Trans. Amer. Math. Soc. 300 (1987), 721–736.

    Article  MATH  MathSciNet  Google Scholar 

  29. E. L. Stout, Two theorems concerning functions holomorphic on multiply connected domains, Bull. Amer. Math. Soc. 69 (1963), 527–530.

    Article  MATH  MathSciNet  Google Scholar 

  30. E. L. Stout, Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255–285.

    Article  MathSciNet  Google Scholar 

  31. E. L. Stout, On some algebras of analytic functions on finite open Riemann surfaces, Math. Z. 92 (1966), 366–379; Corrections to: On some algebras of analytic functions on finite open Riemann surfaces, Math. Z. 95 (1967), 403–404.

    Article  MathSciNet  Google Scholar 

  32. N. Th. Varopoulos, Ensembles pics et ensembles d’interpolation d’une algebra uniforme, C. R. Acad. Sci. Paris, Ser. A. 272 (1971), 866–867.

    MATH  MathSciNet  Google Scholar 

  33. A. G. Vitushkin, Analytic capacity of sets in problems of approximation theory, UspehiMat. Nauk 22, no. 6 (138) (1967), 141–199. Translation in Russian Math. Surveys 22 (1967) 139–200.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Handy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handy, J. The corona theorem on the complement of certain square cantor sets. J Anal Math 108, 1–18 (2009). https://doi.org/10.1007/s11854-009-0016-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-009-0016-1

Keywords

Navigation