Skip to main content
Log in

Boundary trace inequalities and rearrangements

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

A new approach to boundary trace inequalities for Sobolev functions is presented, which reduces any trace inequality involving general rearrangement-invariant norms to an equivalent, considerably simpler, one-dimensional inequality for a Hardy-type operator. In particular, improvements of classical boundary trace embeddings and new optimal trace embeddings are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Adams and L.I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1976.

    Google Scholar 

  2. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  3. T. Aubin, Problèmes isopérimetriques et espaces de Sobolev, J. Diff. Geom. 11 (1976), 573–598.

    MATH  MathSciNet  Google Scholar 

  4. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.

    MATH  Google Scholar 

  5. O.V. Besov, The traces on a nonsmooth surface of classes of differentiable functions. (Russian), in Studies in the Theory of Differentiable Functions of Several Variables and its Applications, IV. Trudy Mat. Inst. Steklov. 117 (1972), 11–21.

  6. H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Eq. 5 (1980), 773–789.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.E. Brothers and W.P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179.

    MATH  MathSciNet  Google Scholar 

  8. A. Cianchi, A sharp form of Poincaré type inequalities on balls and spheres, Z. Angew. Math. Phys. 40 (1989), 558–569.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 (1996), 39–65.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Cianchi, Symmetrization and second-order Sobolev inequalities, Ann. Mat. Pura Appl. 183 (2004), 45–77.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Cianchi, R. Kerman, B. Opic and L. Pick, A sharp rearrangement inequality for fractional maximal operator, Studia Math. 138 (2000), 277–284.

    MATH  MathSciNet  Google Scholar 

  12. R.A. De Vore and K. Scherer, Interpolation of linear operators on Sobolev spaces, Ann. ofMath. (2) 109 (1979), 583–599.

    Article  Google Scholar 

  13. D. E. Edmunds, R. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307–355.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Gagliardo, Caratterizzazioni della tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284–305.

    MATH  MathSciNet  Google Scholar 

  15. K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77–102.

    MATH  MathSciNet  Google Scholar 

  16. T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177–199.

    MATH  MathSciNet  Google Scholar 

  17. B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Springer, Berlin, 1985.

    MATH  Google Scholar 

  18. R. Kerman and L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (2006), 535–570.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 3, Dunod, Paris, 1970.

    MATH  Google Scholar 

  20. V.G. Maz’ya, Sobolev Spaces, Springer, Berlin, 1985.

    Google Scholar 

  21. V.G. Maz’ya, Analytic criteria in the qualitative spectral analysis of the Schrödinger operator, in Spectral Theory and Mathematical Physics, Amer. Math. Soc., Providence, R.I., 2007, pp. 257–288.

    Google Scholar 

  22. J. Moser, A sharp form of an inequality by Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1092.

    Article  Google Scholar 

  23. R. O’Neil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963), 129–142.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Opic and A. Kufner, Hardy-Type Inequalities, Longman Scientific & Technical, Harlow, 1990.

    MATH  Google Scholar 

  25. J. Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279–317.

    MATH  MathSciNet  Google Scholar 

  26. J.M. Rakotoson and R. Temam, A co-area formula with applications to monotone rearrangement and to regularity, Arch. Rat. Mech. Anal. 109 (1990), 213–238.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158.

    MATH  MathSciNet  Google Scholar 

  28. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.

    Article  MATH  MathSciNet  Google Scholar 

  29. I.G. Verbitsky, Superlinear equations, potential theory and weighted norm inequalities, in Nonlinear Analysis, Function Spaces and Applications, Vol. 6, Acad. Sci. Czech Repub., Prague, 1999, pp. 223–269.

    Google Scholar 

  30. W.P. Ziemer, Weakly Differentiable Functions, Springer, New York, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cianchi.

Additional information

This research was partially supported by the Italian research project “Geometric properties of solutions to variational problems” of GNAMPA (INdAM) 2006, by the research project MSM 0021620839 of the Czech Ministry of Education, by grants 201/03/0935, 201/05/2033 and 201/07/0388 of the Grant Agency of the Czech Republic and by the Nečas Center for Mathematical Modeling project no. LC06052 financed by the Czech Ministry of Education.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cianchi, A., Kerman, R. & Pick, L. Boundary trace inequalities and rearrangements. J Anal Math 105, 241–265 (2008). https://doi.org/10.1007/s11854-008-0036-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0036-2

Keywords

Navigation