Skip to main content
Log in

Univalent functions in Hardy, Bergman, Bloch and related spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The aim of this paper is to show that univalent functions in several classical function spaces can be characterized by integral conditions involving the maximum modulus function. For a suitable choice of parameters, the established condition or its appropriate variant reduces to a known characterization of univalent functions in the Hardy or weighted Bergman space and gives a new characterization of univalent functions in several Möbius invariant function spaces, such as BMOA, Q p or the Bloch space. It is proved, for example, that univalent functions in the Dirichlet type space \( \mathcal{D}_{p + \alpha }^p \) are the same as the univalent functions in H pα and S pα if p ≥ 2. Moreover, it is shown that there is in a sense a much smaller Möbius invariant subspace of the Bloch space than Q p still containing all univalent Bloch functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.

    MATH  MathSciNet  Google Scholar 

  2. R. Aulaskari, P. Lappan, J. Xiao and R. Zhao, On α-Bloch spaces and multipliers of Dirichlet spaces, J. Math. Anal. Appl. 209 (1997), 103–121.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Aulaskari, D. A. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485–506.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101–121.

    MATH  MathSciNet  Google Scholar 

  5. A. Baernstein II, Analytic functions of bounded mean oscillation, in Aspects of Contemporary Complex Analysis, D. Brannan and J. Clunie (eds.), Academic Press (1980), 3–36.

  6. A. Baernstein II, Coefficients of univalent functions with restricted maximum modulus, Complex Variables Theory Appl. 5 (1986), 225–236.

    MATH  MathSciNet  Google Scholar 

  7. A. Baernstein II, D. Girela and J. A. Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type, Illinois J. Math. 48 (2004), 837–859.

    MATH  MathSciNet  Google Scholar 

  8. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Carleson, Interpolations by bounded functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559.

    Article  MathSciNet  Google Scholar 

  10. J. J. Donaire, D. Girela and D. Vukotić, On univalent functions in some Möbius invariant spaces, J. Reine Angew. Math. 553 (2002), 43–72.

    MATH  MathSciNet  Google Scholar 

  11. P. Duren, Theory of H p Spaces, Academic Press, New York-London, 1970.

    MATH  Google Scholar 

  12. P. Duren, Univalent Functions, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  13. P. Duren and A. Schuster, Bergman Spaces, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  14. J. Feng and T. H. MacGregor, Estimates on integral means of the derivatives of univalent functions, J. Anal. Math. 29 (1976), 203–231.

    Article  MATH  Google Scholar 

  15. T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalitites, J. Math. Anal. Appl. 38 (1972), 746–765.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

    MATH  Google Scholar 

  17. D. Girela, M. Pavlović and J. A. Peláez, Spaces of analytic functions of Hardy-Bloch type, J. Anal. Math. 100 (2006), 53–81.

    Article  MathSciNet  Google Scholar 

  18. W. K. Hayman, Multivalent Functions, Cambridge University Press, Cambridge, 1958.

    MATH  Google Scholar 

  19. H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  20. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403–439.

    Article  MathSciNet  Google Scholar 

  21. P. Koosis, Introduction to H p Spaces, 2nd edition, Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  22. J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series (II), Proc. London Math. Soc. 42 (1936), 52–89.

    Article  MATH  Google Scholar 

  23. D. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103 (1988), 887–893.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Mateljević and M. Pavlović, L p -behaviour of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309–316.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. A. Peláez, Contribuciones a la teoría de ciertos espacios de funciones analíticas, PhD thesis, Universidad de Málaga, 2004.

  26. F. Pérez-González and J. Rättyä, Forelli-Rudin estimates, Carleson measures and F(p, q, s)-functions, J. Math. Anal. Appl. 315 (2006), 394–414.

    Article  MATH  MathSciNet  Google Scholar 

  27. Ch. Pommerenke, Uber die Mittelwerte und Koeffizienten multivalenter Funktionen, Math. Ann. 145 (1961/62), 285–296.

    Article  MathSciNet  Google Scholar 

  28. Ch. Pommerenke, Relations between the coefficients of a univalent function, Invent. Math. 3 (1967), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  29. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

    MATH  Google Scholar 

  30. Ch. Pommerenke, Schlichte Funktionen and analytische Funktionen von beschränkten mittlerer Oszillation, Comment. Math. Helv. 52 (1977), 591–602.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  32. H. Prawitz, Über Mittelwerte analytischer Funktionen, Ark. Mat. Astr. Fys. 20 (1927), 1–12.

    Google Scholar 

  33. L. A. Rubel and R. M. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45–49.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Rättyä, On some complex function spaces and classes, Ann. Acad. Sci. Fenn. Math. Diss. No. 124 (2001).

  35. W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), 2331–2348.

    Article  MATH  MathSciNet  Google Scholar 

  36. C. S. Stanton, Counting functions and majorization for Jensen measures, Pacific J. Math. 125 (1986), 459–468.

    MATH  MathSciNet  Google Scholar 

  37. P. Stein, On a theorem of M. Riesz, J. London Math. Soc. 8 (1933), 242–247.

    Article  MATH  Google Scholar 

  38. S. A. Vinogradov, Multiplication and division in the space of analytic functions with an area-integrable derivative, and in some related spaces, (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii 23, 45–77, 308; translation in J. Math. Sci. (New York) 87 (1997), no. 5, 3806–3827.

  39. D. Walsh, A property of univalent functions in A p , Glasg. Math. J. 42 (2000), 121–124.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  41. J. Xiao, Geometric Q p functions, Birkhäuser Verlag, Basel, 2006.

    MATH  Google Scholar 

  42. S. Yamashita, Criteria for functions to be of Hardy class H p, Proc. Amer. Math. Soc. 75 (1979), 69–72.

    Article  MATH  MathSciNet  Google Scholar 

  43. R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105, 1996.

  44. R. Zhao, On α-Bloch functions and VMOA, Acta. Math. Sci. 16 (1996), 349–360.

    MATH  Google Scholar 

  45. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc., New York, 1990.

    MATH  Google Scholar 

  46. K. Zhu, Translating inequalities between Hardy and Bergman spaces, Amer. Math. Monthly 111 (2004), 520–525.

    Article  MATH  MathSciNet  Google Scholar 

  47. A. Zygmund, Trigonometric Series, 2nd ed. Vols. I and II, Cambridge University Press, New York, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pérez-González.

Additional information

This research has been supported in part by the MEC-Spain MTM2005-07347, the Spanish Thematic Network MTM2006-26627-E, and the Academy of Finland 210245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-González, F., Rättyä, J. Univalent functions in Hardy, Bergman, Bloch and related spaces. J Anal Math 105, 125–148 (2008). https://doi.org/10.1007/s11854-008-0032-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0032-6

Keywords

Navigation