Skip to main content
Log in

Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we present new uniqueness results related to geometric aspects of mean periodicity on various homogeneous spaces. Among these results, we point out the equivalence of the local and the global Pompeiu property for arbitrary families of compactly supported distributions, the solution of the local Pompeiu problem for the class of non real-analytic functions, and local versions of the two-radii theorem on symmetric spaces of arbitrary rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Agranovsky and E. K. Narayanan, A local two radii theorem for the twisted spherical means on ℂ n, Complex Analysis and Dynamical Systems II, Contemp. Math. 382 (2005), 13–27.

  2. R. A. Askey, T. H. Koornwinder, and W. Schempp (Eds.), Special Functions: Group Theoretical Aspects and Applications, D. Reidel Publishing Company, Dordrecht, 1984.

    MATH  Google Scholar 

  3. E. Badertscher, The Pompeiu problem on locally symmetric spaces, J. Anal. Math. 57 (1991), 250–281.

    MATH  MathSciNet  Google Scholar 

  4. C. A. Berenstein and R. Gay, A local version of the two-circles theorem, Israel J. Math. 55 (1986), 267–288.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. A. Berenstein and R. Gay, Le probléme de Pompeiu local, J. Analyse Math. 52 (1989), 133–166.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. A. Berenstein and D. C. Struppa, Complex analysis and convolution equations, in “Several Complex Variables, V”, (G. M. Henkin, Ed.), Encyclopedia of Math. Sciences, Vol. 54, Chap. 1, Springer-Verlag, New York, 1993, pp. 1–108.

    Google Scholar 

  7. C. A. Berenstein and P. C. Yang, An inverse Neumann problem, J. Reine Angew. Math. 382 (1987), 1–21.

    MATH  MathSciNet  Google Scholar 

  8. C. A. Berenstein and L. Zalcman, Pompeiu’s problem on symmetric spaces, Comment. Math. Helv. 55 (1980), 593–621.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. A. Berenstein, R. Gay and A. Yger, Inversion of the local Pompeiu transform, J. Analyse Math. 54 (1990), 259–287.

    MATH  MathSciNet  Google Scholar 

  10. C. A. Berenstein, R. Gay and A. Yger, The three squares theorem, a local version, in Analysis and Partial Differential Equations, (C. Sadosky Ed.), Marcel Dekker, New York, 1990, pp. 35–50.

    Google Scholar 

  11. M. Berkani, M. El Harchaoui and R. Gay, Inversion de la transformation de Pompéiu locale dans l’espace hyperbolique quaternionique — Cas des deux boules, Complex Variables Theory Appl. 43 (2000), 29–57.

    MATH  MathSciNet  Google Scholar 

  12. L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier (Grenoble) 23 (1973), 125–154.

    MathSciNet  Google Scholar 

  13. M. El Harchaoui, Inversion de la transformation de Pompéiu locale dans les espaces hyperboliques réel et complexe (Cas de deux boules), J. Anal. Math. 67 (1995), 1–37.

    MATH  MathSciNet  Google Scholar 

  14. A. Erd’elyi (ed.), Higher Transcendental Functions, Vols. I, II, McGraw-Hill, New York, 1953.

    Google Scholar 

  15. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    MATH  Google Scholar 

  16. S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.

    MATH  Google Scholar 

  17. S. Helgason, Geometric Analysis on Symmetric spaces, Amer. Math. Soc., Providence, Rhode Island, 1994.

    MATH  Google Scholar 

  18. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vols. I, II, Springer-Verlag, New York, 1983.

    Google Scholar 

  19. F. John, Plane Waves and Spherical Means, Applied to Partial Differential Equations, Interscience Publishers, New York-London, 1955.

    MATH  Google Scholar 

  20. B. Ya. Levin, Distribution of Zeros of Entire Functions, Gostekhizdat, Moscow, 1956; English transl.: Amer. Math. Soc., Providence, Rhode Island, 1964.

    Google Scholar 

  21. V. V. Napalkov, Convolution Equations in Multidimensional Spaces, Nauka, Moscow, 1982 (Russian).

    MATH  Google Scholar 

  22. E. Ya. Riekstyn’š, Asymptotic Expansions of Integrals, Vol. 1, Zinatne, Riga, 1974 (Russian).

    Google Scholar 

  23. W. Rudin, Function Theory in the Unit Ball of ℂ n, Springer-Verlag, New York, 1980.

    Google Scholar 

  24. L. Schwartz, Théorie générale des fonctions moyenne périodiques, Ann. of Math. (2) 48 (1947), 857–929.

    Article  MathSciNet  Google Scholar 

  25. J. D. Smith, Harmonic analysis of scalar and vector fields in ℝ n, Proc. Cambridge Philos. Soc. 72 (1972), 403–416.

    MATH  MathSciNet  Google Scholar 

  26. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.

    MATH  Google Scholar 

  27. S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Princeton Univ. Press, Princeton, 1993.

    MATH  Google Scholar 

  28. S. Thangavelu, Spherical means and CR functions on the Heisenberg group, J. Anal. Math. 63 (1994), 255–286.

    MATH  MathSciNet  Google Scholar 

  29. S. Thangavelu, Mean periodic functions on phase space and the Pompeiu problem with a twist, Ann. Inst. Fourier (Grenoble) 45 (1995), 1007–1035.

    MATH  MathSciNet  Google Scholar 

  30. N. Y. Vilenkin, Special Functions and the Theory of Group Representations, Nauka, Moscow, 1991; English transl. of 1-st ed.: Amer. Math. Soc., Providence, RI, 1968.

    Google Scholar 

  31. V. V. Volchkov, Theorems on ball mean values in symmetric spaces, Mat. Sbornik 192(9) (2001), 17–38; translation in Sb. Math. 192 (2001), 1275–1296.

    MathSciNet  Google Scholar 

  32. V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003.

    MATH  Google Scholar 

  33. V. V. Volchkov, Uniqueness theorems for solutions of convolution equations on symmetric spaces, Izvestiya RAN: Ser. Mat. 70(6) (2006), 3–18.

    MathSciNet  Google Scholar 

  34. V. V. Volchkov and Vit. V. Volchkov, Analogues of the local two-radii theorem on non-compact Riemannian symmetric spaces of arbitrary rank, Donetsk National University, Donetsk, 2004.

    Google Scholar 

  35. V. V. Volchkov and Vit. V. Volchkov, New results in integral geometry, Complex Analysis and Dynamical Systems II, Contemp. Math. 382 (2005), 417–432.

  36. V. V. Volchkov and Vit. V. Volchkov, Uniqueness Theorems and Description of Solutions for Convolution Equations on Symmetric Spaces and for the Twisted Convolution Equations on ℂ n, Donetsk National University, Donetsk, 2005.

    Google Scholar 

  37. S. A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J. 30 (1981), 357–369.

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rat. Anal. Mech. 47 (1972), 237–254.

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Zalcman, Mean values and differential equations, Israel J. Math. 14 (1973), 339–352.

    Article  MATH  MathSciNet  Google Scholar 

  40. L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), 161–175.

    Article  MATH  MathSciNet  Google Scholar 

  41. L. Zalcman, A bibliographic survey of the Pompeiu problem, Approximation by Solutions of Partial Differential Equations, ed. Fuglede B. et. al., Kluwer Acad. Publ., Dordrecht, 1992, pp. 185–194.

    Google Scholar 

  42. L. Zalcman, Supplementary bibliography to “A bibliographic survey of the Pompeiu problem”, Radon Transform and Tomography, Contemp. Math. 278 (2001), 69–74.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Volchkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volchkov, V.V., Volchkov, V.V. Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group. J Anal Math 105, 43–123 (2008). https://doi.org/10.1007/s11854-008-0031-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0031-7

Keywords

Navigation