Skip to main content
Log in

A boundary version of Ahlfors’ Lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

A boundary version of Ahlfors’ Lemma is established and used to show that the classical Schwarz-Carathéodory reflection principle for holomorphic functions has a purely conformal geometric formulation in terms of Riemannian metrics. This conformally invariant reflection principle generalizes naturally to analytic maps between Riemann surfaces and contains among other results a characterization of finite Blaschke products due to M. Heins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. L. Ahlfors, An extension of Schwarz’ lemma, Trans. Amer. Math. Soc. 43 (1938), 359–364.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Aviles and R. McOwen, Conformal deformations of complete manifolds with negative curvature, J. Diff. Geom. 21 (1985), 269–281.

    MATH  MathSciNet  Google Scholar 

  3. J. S. Bland, Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains, Math. Ann. 263 (1983), 289–301.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bland and M. Kalka, Complete metrics conformal to the hyperbolic disc, Proc. Amer. Math. Soc. 97 (1986), 128–132.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Brooks, Some geometric aspects of the work of Lars Ahlfors, in Lectures in Memory of Lars Ahlfors, (R. Brooks and M. Sodin, eds.), Israel Math. Conf. Proc. 14, Bar-Ilan University, Ramat Gan, 2000, pp. 31–39.

    Google Scholar 

  6. E. Calabi, An extension of E. Hopf ’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45–56.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip (Die Randwerte vonmeromorphen Funktionen), Comment. Math. Helv. 46 (1946), 263–278.

    Article  Google Scholar 

  8. H. Chen, On the Bloch constant, in Approximation, Complex Analysis, and Potential Theory, (ed. N. Arakelian et al.), Kluwer Academic Publishers, Dordrecht, 2001, pp. 129–161.

    Google Scholar 

  9. R. Courant and D. Hilbert, Methoden der Mathematischen Physik II, Springer Berlin-Heidelberg-New York, 1968.

    MATH  Google Scholar 

  10. R. Fournier and St. Ruscheweyh, Free boundary value problems for analytic functions in the closed unit disk, Proc. Amer. Math. Soc. 127 (1999), 3287–3294.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Fournier and St. Ruscheweyh, A generalization of the Schwarz-Carathéodory reflection principle and spaces of pseudo-metrics, Math. Proc. Cambridge Phil. Soc. 130 (2001), 353–364.

    Article  MATH  MathSciNet  Google Scholar 

  12. O. Frostman, Sur les produits de Blaschke, Fysiogr. Sällsk. Lund Förh. 12 (1942), 169–182.

    MathSciNet  Google Scholar 

  13. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1997.

    Google Scholar 

  14. M. Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1–60.

    MATH  MathSciNet  Google Scholar 

  15. M. Heins, Some characterizations of finite Blaschke products of positive degree, J. Analyse Math. 46 (1986), 162–166.

    MATH  MathSciNet  Google Scholar 

  16. M. Heins, A note concerning the lemma of Julia-Wolff-Carathéodory, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 133–136.

    MATH  MathSciNet  Google Scholar 

  17. P. Koosis, Introduction to H p Spaces, 2nd ed., Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  18. D. Minda, Regular analytic arcs and curves, Colloq. Math. 38 (1977), 73–82.

    MATH  MathSciNet  Google Scholar 

  19. D. Minda, The strong form of Ahlfors’ lemma, Rocky Mountain J. Math. 17 (1987), 457–461.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Minda, A reflection principle for the hyperbolic metric and applications to geometric function theory, Complex Variables Theory Appl. 8 (1987), 129–144.

    MATH  MathSciNet  Google Scholar 

  21. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  22. O. Roth, A general conformal geometric reflection principle, Trans. Amer. Math. Soc., to appear.

  23. H. L. Royden, The Ahlfors-Schwarz Lemma: the case of equality, J. Analyse Math. 46 (1986), 261–270.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. A. Schwarz, Über einige Abbildungsaufgaben, J. Reine Angew. Math. 70 (1869), 105–120.

    Google Scholar 

  25. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  26. S. T. Yau, A general Schwarz Lemma for Kähler Manifolds, Amer. J. Math. 100 (1978), 197–203.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

D. Kraus was supported by a HWP scholarship

O. Roth and S. Ruscheweyh received partial support form the German-Israeli Foundation (grant G-809-234.6/2003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, D., Roth, O. & Ruscheweyh, S. A boundary version of Ahlfors’ Lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps. J Anal Math 101, 219–256 (2007). https://doi.org/10.1007/s11854-007-0009-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-007-0009-x

Keywords

Navigation