Skip to main content

Advertisement

Log in

Coastal morphology changes in the southern Mediterranean Basin: the case of the Hammamet fringe (Gulf of Hammamet, NE-Tunisia)

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Morphology changes along the Hammamet fringe (South Rive of the Mediterranean) were studied based on coastline evolution during the period 1956–2010 using topographic maps (1956 and 1985), aerial photographs (2010) and satellite images (2020). Coastline evolution rates are calculated using Arc GIS software's extension Digital Shoreline Analysis System (DSAS). The study was completed by grain-size analysis of superficial sediments collected from different depths (0, 2, 5, 7 and 10 m) in July 2020. Results show a coastline retreat of 0.33 to 2.5 ± 0.25 m/year essentially, during 1956–1985, and an accretion (1.1 to 9.32 ± 0.13 m/year) upstream of the leisure harbour (Marina). From 2010 to 2020, recent evolution indicates an accretion around the exoreic rivers of El Mrezga, Batene, and Moussa and upstream of the cited harbour. Erosion is observed along the coastline of Hammamet North (1.64 to 10.5 ± 1.53 m/year). The existence of rocky beaches proves it, the loss of an important quantity of sediments, and the change of grain-size characteristic of sediments (Mz) from fine sands to Medium and coarse sands. These results can be explained by changes in hydrodynamic parameters (waves, currents…) and the acceleration of Sea Level Rise in the Mediterranean due to recent climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amrouni O, Hzami A, Heggy E (2019) Photogrammetric assessment of shoreline retreat in North Africa: Anthropogenic and natural drivers. ISPRS J Photogramm Remote Sens 57:73–92. https://doi.org/10.1016/j.isprsjprs.2019.09.001

    Article  Google Scholar 

  • Angusamy NG, Rajamanickam GV (2007) Coastal processes of Central Tamil Nadu, India: clues from grain-size studies. Oceanologia 49(1):41–57

    Google Scholar 

  • Anthony EJ, Hequette A (2007) The grain-size characterization of coastal sand from the Somme estuary to Belgium: sediment sorting processes and mixing in a tide and storm-dominated setting. Sediment Geol 202:369–382

    Article  Google Scholar 

  • Barusseau JP (2011) Influence of mixtures of grain-size populations on the parametric and modal characteristics of coastal sands (Hérault, Mediterranean Sea, France). J Sediment Res 81:611–629. https://doi.org/10.2110/jsr.2011.46

    Article  Google Scholar 

  • Barusseau JP, Diouf MB, Bardonnie DLA, M, El Ghandour N, (1999) Méthodologie pour une simulation des transformations granulomètriques de sables de la zone d’avant-côte. Oceanol Acta 22:179–191

    Article  Google Scholar 

  • Bascom WN (1951) The relationship between sand size and beach free slope. Trans Am Geophys Union 32:866–874

    Article  Google Scholar 

  • Ben Abdallah R (2008) Caractérisation Hydrogéologique, Hydro-chimique et Isotopique de la nappe phréatique de Nabeul-Hammamet (Cap Bon), mémoire de mastère, l’Ecole Nationale d’Ingénieurs de Sfax, p 93

  • Bounouh A (2010) Nouvelles approches en matière de protection et de gestion du littoral en Tunisie. Méditerranée. Revue géographique des pays Méditerranéens 45–53. https://doi.org/10.4000/mediterranee.4591

  • Buatios LA, Santiago N, Parra K, Steel R (2008) Animal-substrate interactions in an early miocene wave-dominated tropical delta: Delineating environmental stresses and depositional dynamics (Tacata Field, Eastern Venezuela). Sed Geol 78:458–479

    Google Scholar 

  • Chamley H (1987, 2000) Bases de sédimentologie. Edition Dunod, Paris, 2ème édition, p 174

  • Church JA, White NJ (2006) A 20th-century acceleration in global sea-level rise. Geophys Res Lett 33(L01602):1–4. https://doi.org/10.1029/2005GL024826

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner GK, Ignore M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1137–1216

    Google Scholar 

  • Colleuil B (1976) Etude stratigraphique et néotectonique des formations néogènes et quaternaires de la région de Nabeul – Hammamet (Cap Bon, Tunisie). D.E.S. Nice.

  • Crowell M, Leatherman SP, Buckley M (1993) Shoreline change rate analysis: long term versus short term data. Shore Beach 61(2):13–20

    Google Scholar 

  • Farnole F, Queffeulou G (1994) Impacts physiques et sédimentologiques d’un port de plaisance Hammamet-Sud (Tunisie), pp 95–104

  • Folk R, Word W (1957) Brazors river bar: a study in significance of grain size parameters. J Sedim Petrol 27:13–27

    Article  Google Scholar 

  • Friedman GM (1961) Distinction between dune, beach and river sands from their textural characteristics. Sedimentology 26:1–30

    Google Scholar 

  • Friedman GM (1979) Difference in size distributions of populations of particles among sands of various origins. Sedimentology 26:1–30

    Google Scholar 

  • Heberger M, Cooley H, Herrera P (2009) The impacts of sea-level rise on the California coast. California Climate Change Center, California, p 101

    Google Scholar 

  • Hellal M (2009) La marina de la station touristique intégrée Yasmine-Hammamet (Tunisie): Enjeux, conception et impacts. Doctorant à l’Université François-Rabelais de Tours et assistant d’enseignement supérieur à l’Université de Monastir (Tunisie). Vol. 73

  • Hzami A (2015) Approche SIG pour l’étude morpho-dynamique côtière en relation avec les processus hydro-sédimentaires au niveau du Golfe de Hammamet. Mémoire de mastère de recherche, faculté des sciences de Bizerte

  • Kathirkaman I, Krishnamurthy RR (2010) Sediment characterisation of the 26 December 2004 Indian Ocean tsunami in Andaman group of islands, Bay of Bengal. India J Coast Conserv 14:215–230

    Article  Google Scholar 

  • Klein AHF, Miot Da Silva G, Ferreira O, Dias JA (2004) Beach sediment distribution for a headland bay coast. J Coast Res (SI 41):285–293

  • Lancker VV, Lanckneus J, Hearn S, Hoekstra P, Levoy F, Miles J, Moerkerke G, Monfort O, Whitehouse R (2004) Coastal and nearshore morphology, bedforms and sediment transport pathways at Teignmouth (UK). Cont Shelf Res 24:1171–1202

    Article  Google Scholar 

  • Moiola RJ, Weiser D (1968) Textural parameters: an evaluation. J Sediment Petrol 38:45–53

    Google Scholar 

  • Noori B, Ghadimvand NK, Movahed B, Yousefpour M (2016) Sedimentology and depositional environment of the Kazhdumi formation sandstones in the Northwestern Area of the Persian Gulf. Open Journal of Geology 6:1401–1422. https://doi.org/10.4236/ojg.2016.611100

    Article  Google Scholar 

  • Ottmann F (1965) Introduction to marine and littoral Geology. Edi[1]tion Masson and Cie 81–114

  • Oueslati A (2004) Littoral et aménagement en Tunisie. Orbis, Tunis, pp 325–340

  • Paskoff R (1998) Les littoraux : impacts des aménagements sur leur évolution. 3ème édition, Armand Colin, Paris, p 257

  • Saïdi H, Zargouni F (2019) Sea-level rise impact on the evolution of a microtidal Mediterranean coastline without human-made structures: the case of the Port aux Princes-Sidi Daoued coastline, Gulf of Tunis, NE-Tunisia. Acta Oceanol Sin 38(3):72–77. https://doi.org/10.1007/s13131-018-1331-0

    Article  Google Scholar 

  • Saïdi H (2013) Etude de la dynamique sédimentaire et Evolution du trait de côte du golfe de Tunis (Tunisie nord-orientale), thèse de Doctorat en Géologie, Faculté des Sciences de Tunis, Université Tunis El Manar, p 204

  • Stronkhorst J, Levering A, Hendriksen G, Rangel-Buitrago N, Rosendahl Appelquist L (2018) Regional coastal erosion assessment based on global open-access data: a case study for Colombia. J Coast Conserv. https://doi.org/10.1007/s11852-018-0609

  • Thieler ER, Martin D, Ergul A (2003) The Digital Shoreline Analysis System, version 2.0: Shoreline change measurement software extension for Arc-View. U.S. Geological Survey Open-File Report 03–076. http://woodshole.er.usgs.gov/projectpages/dsas/

  • Vatan A (1967) Manuel de sédimentologie. Editions Technip, Paris, pp 122–138

    Google Scholar 

  • Vincent P (1986) Differentiation of modern beach and coastal dune sands—a logit regression approach using the parameters of the hyperbolic distribution. Sediment Geol 49:167–176

    Article  Google Scholar 

  • Vincent P (1998) Particle size differentiation of some coastal sands: a multinomial logit regression approach. J Coast Res 14:331–336

    Google Scholar 

  • Visher GS (1969) Grain size distributions and depositional processes. J Sediment Petrol 39:1074–1106

    Google Scholar 

  • Wang X, Liu Y, Ling F, Liu Y, Fang F (2017) Spatio-temporal change detection of Ningbo coastline using landsat time-series images during 1976–2015. Int J Geo-Information J Geo-Inf 6(68):1–21. https://doi.org/10.3390/ijgi6030068

    Article  Google Scholar 

  • Zaara C (1996) Etude de la stabilité du littoral du golfe de Hammamet mémoire de fin d’étude. Faculté des Sciences de Tunis, pp 80–87

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Saïdi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saïdi, H., Louati, M., Jaballi, Z. et al. Coastal morphology changes in the southern Mediterranean Basin: the case of the Hammamet fringe (Gulf of Hammamet, NE-Tunisia). J Coast Conserv 26, 59 (2022). https://doi.org/10.1007/s11852-022-00904-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11852-022-00904-0

Keywords

Navigation