Skip to main content

Advertisement

Log in

High-mobility group box 1 regulates cytoprotective autophagy in a mouse spermatocyte cell line (GC-2spd) exposed to cadmium

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Cadmium (Cd) is an environmental and industrial pollutant that induces a broad spectrum of toxicological effects, influences a variety of human organs, and is associated with poor semen quality and male infertility. Increasing evidence demonstrates that Cd induces testicular germ cell apoptosis in rodent animals. However, the specific effect of Cd exposure on autophagy in germ cells is poorly understood.

Methods

We investigate the role of high-mobility group box 1 protein (HMGB1), a ubiquitous nuclear protein, on Cd-evoked autophagy in a mouse spermatocyte cell line (GC-2spd).

Results

Our data have shown that autophagy was significantly elevated in GC-2spd cells exposed to Cd. Furthermore, there was a reduction in rapamycin (RAP)-mediated apoptosis. In addition, Cd exposure reduced cell viability, which is an effect that could be significantly inhibited by RAP treatment. These results indicate that autophagy appears to serve a positive function in reducing Cd-induced cytotoxicity. In addition, HMGB1 increased coincident with the processing of LC3-I to LC3-II. Thus, the upregulation of HMGB1 increases LC3-II levels.

Conclusions

Our data suggest that HMGB1-induced autophagy appears to act as a defense/survival mechanism against Cd cytotoxicity in GC-2spd cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Honda R, Swaddiwudhipong W, Nishijo M, Mahasakpan P, Teeyakasem W, Ruangyuttikarn W, Satarug S, Padungtod C, Nakagawa H (2010) Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett 198(1):26–32. doi:10.1016/j.toxlet.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  2. Pant N, Upadhyay G, Pandey S, Mathur N, Saxena DK, Srivastava SP (2003) Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reprod Toxicol 17(4):447–450

    Article  CAS  PubMed  Google Scholar 

  3. Monsefi M, Alaee S, Moradshahi A, Rohani L (2010) Cadmium-induced infertility in male mice. Environ Toxicol 25(1):94–102. doi:10.1002/tox.20468

    CAS  PubMed  Google Scholar 

  4. Wu HM, Lin-Tan DT, Wang ML, Huang HY, Wang HS, Soong YK, Lin JL (2008) Cadmium level in seminal plasma may affect the pregnancy rate for patients undergoing infertility evaluation and treatment. Reprod Toxicol 25(4):481–484. doi:10.1016/j.reprotox.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  5. Xu LC, Wang SY, Yang XF, Wang XR (2001) Effects of cadmium on rat sperm motility evaluated with computer assisted sperm analysis. Biomed Environ Sci 14(4):312–317

    CAS  PubMed  Google Scholar 

  6. Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res 533(1–2):107–120

    Article  CAS  PubMed  Google Scholar 

  7. Prozialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 343(1):2–12. doi:10.1124/jpet.110.166769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim J, Soh J (2009) Cadmium-induced apoptosis is mediated by the translocation of AIF to the nucleus in rat testes. Toxicol Lett 188(1):45–51. doi:10.1016/j.toxlet.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  9. Ozawa N, Goda N, Makino N, Yamaguchi T, Yoshimura Y, Suematsu M (2002) Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. J Clin Investig 109(4):457–467. doi:10.1172/JCI13190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Esakky P, Hansen DA, Drury AM, Moley KH (2014) Modulation of cell cycle progression in the spermatocyte cell line [GC-2spd(ts) Cell-Line] by cigarette smoke condensate (CSC) via arylhydrocarbon receptor-nuclear factor erythroid 2-related factor 2 (Ahr-Nrf2) pathway. Biol Reprod 90(1):9. doi:10.1095/biolreprod.113.113225

    Article  PubMed  Google Scholar 

  11. Yang X, Zhong X, Tanyi JL, Shen J, Xu C, Gao P, Zheng TM, DeMichele A, Zhang L (2013) mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells. Biochem Biophys Res Commun 431(3):617–622. doi:10.1016/j.bbrc.2012.12.083

    Article  CAS  PubMed  Google Scholar 

  12. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. doi:10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25(3):1025–1040. doi:10.1128/MCB.25.3.1025-1040.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120(2):237–248. doi:10.1016/j.cell.2004.11.046

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6(12):1221–1228. doi:10.1038/ncb1192

    Article  CAS  PubMed  Google Scholar 

  16. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502. doi:10.1126/science.1096645

    Article  CAS  PubMed  Google Scholar 

  17. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245. doi:10.1016/S0070-2153(06)78006-1

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171–182. doi:10.1038/sj.cdd.4402233

    Article  CAS  PubMed  Google Scholar 

  19. Tang D, Kang R, Zeh HJ 3rd, Lotze MT (2010) High-mobility group box 1 and cancer. Biochem Biophys Acta 1799(1–2):131–140. doi:10.1016/j.bbagrm.2009.11.014

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190(5):881–892. doi:10.1083/jcb.200911078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, Zeh HJ, Lotze MT (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29(38):5299–5310. doi:10.1038/onc.2010.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang D, Kang R, Livesey KM, Zeh HJ 3rd, Lotze MT (2011) High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid Redox Signal 15(8):2185–2195. doi:10.1089/ars.2010.3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Q, Kang R, Zeh HJ 3rd, Lotze MT, Tang D (2013) DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 9(4):451–458. doi:10.4161/auto.23691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun X, Tang D (2014) HMGB1-dependent and -independent autophagy. Autophagy 10(10):1873–1876. doi:10.4161/auto.32184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208. doi:10.1016/j.taap.2009.04.020

    Article  PubMed  Google Scholar 

  26. Glahn F, Schmidt-Heck W, Zellmer S, Guthke R, Wiese J, Golka K, Hergenroder R, Degen GH, Lehmann T, Hermes M, Schormann W, Brulport M, Bauer A, Bedawy E, Gebhardt R, Hengstler JG, Foth H (2008) Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors. Arch Toxicol 82(8):513–524. doi:10.1007/s00204-008-0331-9

    Article  CAS  PubMed  Google Scholar 

  27. Henson MC, Chedrese PJ (2004) Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med 229(5):383–392

    Article  CAS  Google Scholar 

  28. Terada N, Ohno N, Yamakawa H, Ohara O, Liao X, Baba T, Ohno S (2005) Immunohistochemical study of a membrane skeletal molecule, protein 4.1G, in mouse seminiferous tubules. Histochem Cell Biol 124(3–4):303–311. doi:10.1007/s00418-005-0031-y

    Article  CAS  PubMed  Google Scholar 

  29. Zhou T, Jia X, Chapin RE, Maronpot RR, Harris MW, Liu J, Waalkes MP, Eddy EM (2004) Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol Lett 154(3):191–200. doi:10.1016/j.toxlet.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  30. Yu X, Hong S, Faustman EM (2008) Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures. ToxicolSci 104(2):385–396. doi:10.1093/toxsci/kfn087

    CAS  Google Scholar 

  31. Benoff S, Jacob A, Hurley IR (2000) Male infertility and environmental exposure to lead and cadmium. Human Reprod Update 6(2):107–121

    Article  CAS  Google Scholar 

  32. Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6(6):508–515. doi:10.1038/sj.cdd.4400526

    Article  CAS  PubMed  Google Scholar 

  33. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. doi:10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  34. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937. doi:10.1038/nrm2245

    Article  CAS  PubMed  Google Scholar 

  35. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188(2):267–275. doi:10.1016/j.cbi.2010.03.040

    Article  CAS  PubMed  Google Scholar 

  36. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65(22):3640–3652. doi:10.1007/s00018-008-8383-9

    Article  CAS  PubMed  Google Scholar 

  37. Son YO, Wang X, Hitron JA, Zhang Z, Cheng S, Budhraja A, Ding S, Lee JC, Shi X (2011) Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells. Toxicol Appl Pharmacol 255(3):287–296. doi:10.1016/j.taap.2011.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Q, Zhu J, Zhang K, Jiang C, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Liu Z (2013) Induction of cytoprotective autophagy in PC-12 cells by cadmium. Biochem Biophys Res Commun 438(1):186–192. doi:10.1016/j.bbrc.2013.07.050

    Article  CAS  PubMed  Google Scholar 

  39. Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121(1):31–42. doi:10.1093/toxsci/kfr031

    Article  CAS  PubMed  Google Scholar 

  40. Lim SC, Hahm KS, Lee SH, Oh SH (2010) Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells. Toxicology 276(1):18–26. doi:10.1016/j.tox.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  41. Dong Z, Wang L, Xu J, Li Y, Zhang Y, Zhang S, Miao J (2009) Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells. Toxicol Vitro 23(1):105–110. doi:10.1016/j.tiv.2008.11.003

    Article  CAS  Google Scholar 

  42. Han W, Sun J, Feng L, Wang K, Li D, Pan Q, Chen Y, Jin W, Wang X, Pan H, Jin H (2011) Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS One 6(12):e28491. doi:10.1371/journal.pone.0028491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng Y, Qiu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Ikejima T (2009) Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38-nuclear factor-kappa B survival pathways in oridonin-treated murine fibrosarcoma L929 cells. FEBS J 276(5):1291–1306. doi:10.1111/j.1742-4658.2008.06864.x

    Article  CAS  PubMed  Google Scholar 

  44. Silva-Fernandes A, Duarte-Silva S, Neves-Carvalho A, Amorim M, Soares-Cunha C, Oliveira P, Thirstrup K, Teixeira-Castro A, Maciel P (2014) Chronic treatment with 17-DMAG improves balance and coordination in a new mouse model of Machado-Joseph disease. Neurotherapeutics 11(2):433–449. doi:10.1007/s13311-013-0255-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5(4):331–342. doi:10.1038/nri1594

    Article  CAS  PubMed  Google Scholar 

  46. Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, Vernon P, Cao L, Tang D (2012) HMGB1 promotes drug resistance in osteosarcoma. Can Res 72(1):230–238. doi:10.1158/0008-5472.CAN-11-2001

    Article  CAS  Google Scholar 

  47. Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ 3rd, Li L, Lotze MT, Tang D (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Can Res 72(8):1996–2005. doi:10.1158/0008-5472.CAN-11-2291

    Article  CAS  Google Scholar 

  48. Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, Yue Z, Zhang HQ, Li M (2014) HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10(1):144–154. doi:10.4161/auto.26751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu K, Huang J, Xie M, Yu Y, Zhu S, Kang R, Cao L, Tang D, Duan X (2014) MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell. Autophagy 10(3):442–452. doi:10.4161/auto.27418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li X, Wang S, Chen Y, Liu G, Yang X (2014) miR-22 targets the 3′ UTR of HMGB1 and inhibits the HMGB1-associated autophagy in osteosarcoma cells during chemotherapy. Tumour Biol 35(6):6021–6028. doi:10.1007/s13277-014-1797-0

    Article  CAS  PubMed  Google Scholar 

  51. Huebener P, Gwak GY, Pradere JP, Quinzii CM, Friedman R, Lin CS, Trent CM, Mederacke I, Zhao E, Dapito DH, Lin Y, Goldberg IJ, Czaja MJ, Schwabe RF (2014) High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo. Cell Metab 19(3):539–547. doi:10.1016/j.cmet.2014.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by The National Natural Science Foundation of China (31171229 and U1132005), The Natural Science Foundation of Guangdong Province (2014A030312012); International Cooperation Project of Science and Technology Planning Project of Guangdong Province (2013B51000087); Science and Information Technology of Guangzhou Key Project (201508020258, 201400000003-4 and 201400000004-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Z., Chen, Y., Niu, X. et al. High-mobility group box 1 regulates cytoprotective autophagy in a mouse spermatocyte cell line (GC-2spd) exposed to cadmium. Ir J Med Sci 186, 1041–1050 (2017). https://doi.org/10.1007/s11845-017-1595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-017-1595-y

Keywords

Navigation