Skip to main content
Log in

The paradox of Wolff’s theories

  • Review Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

The upper femur has long held a fascination for both clinicians and bioengineers as it contains two trabecular columns obviously related to its function. In this respect two theories as to the formation of these columns have developed, both associated with Wolff: the Trajectorial Theory, which relates mainly to the passage of forces through the cancellous bone of the upper femur, and Wolff’s Law of bone formation, which describes the bone’s reaction to these forces and relates to bone in general. The two concepts nevertheless are often used synonymously. The Trajectorial Theory propounds that these cancellous structures in the femoral neck are due to both tension and compression forces, while modern day concepts of Wolff’s Law only acknowledge the action of compression forces: and herein lies the paradox. The Trajectorial Theory and Wolff’s Law, when applied to the upper femur, are mutually exclusive. The evidence, anatomical and physiological, indicates that bone forms within the femoral neck solely under the influence of compression forces. This would indicate that the Trajectorial Theory is not appropriate for this region. An alternative conceptual way of looking at this region is presented which eliminates this theory and resolves the paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolff J (1986) The law of bone remodelling (trans: Maquet P, Furlong R). Springer, Berlin

  2. Bertrum JEA, Swartz SM (1991) The ‘law of bone transformation’: a case of crying Wolff? Biol Rev 66:245–273

    Article  Google Scholar 

  3. Enlow DH (1963) Principles of bone modeling. In: Evans FG (ed) American lectures in anatomy. Charles Thomas, Springfield, pp 1–30

    Google Scholar 

  4. Tobin WJ (1955) The internal architecture of the femur and its clinical significance. J Bone Joint Surg Am 37A:57–71

    Google Scholar 

  5. Scott JH (1957) The mechanical basis of bone formation. J Bone Joint Surg Br 39B:134–144

    Google Scholar 

  6. Koch JC (1917) The laws of bone architecture. Am J Anat 21:177–298

    Article  Google Scholar 

  7. Cowin SC (1997) The false premise of Wolff’s Law. Forma 12(3,4):247–262

    Google Scholar 

  8. Turner CH (1992) On Wolff’s Law of trabecular architecture. J Biomech 25:1–9

    Article  CAS  PubMed  Google Scholar 

  9. Fetto J, Leali A, Moroz A (2002) Evolution of the Koch model of the biomechanics of the hip: clinical perspective. J Orthop Sci 7:724–730

    Article  PubMed  Google Scholar 

  10. Rybicki EF, Simone FA, Weis EB (1972) On the mathematical analysis of stress in the human femur. J Biomech 5:203–215

    Article  CAS  PubMed  Google Scholar 

  11. Carter DR, Orr TE, Fyhrie DP (1989) Relationship between loading history and femoral cancellous bone architecture. J Biomech 22:231–244

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein S, Matthews L, Kuhn J et al (1991) Trabecular bone modelling. An experimental model. J Biomech 24:135–150

    Article  PubMed  Google Scholar 

  13. Van Rietbergen B, Huiskes R, Eckstein F et al (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Min Res 18:1781–1788

    Article  Google Scholar 

  14. Richmond BG, Wight BW, Grosse I et al (2005) Finite element analysis in functional morphology. Anat Rec 283A:259–274

    Article  Google Scholar 

  15. Rohlmann A, Mosner U, Bergann G et al (1982) Finite element analysis and experimental investigation of stress in a femur. J Biomed Eng 4:241–246

    Article  CAS  PubMed  Google Scholar 

  16. Zannoni C, Mantovani R, Viceconti M (1988) Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 20:735–740

    Article  Google Scholar 

  17. Keyak JH, Rossi SA, Jones KA et al (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133

    Article  CAS  PubMed  Google Scholar 

  18. Gomez-Benito MJ, Garcia-Aznar JM, Doblare M (2005) Finite element prediction of proximal femoral fracture pattern under different load. J Biomech Eng 127:9–14

    Article  CAS  PubMed  Google Scholar 

  19. Roger K, Resnick D, Sartoris DJ et al (2005) Computerized tomography of proximal femoral trabecular patterns. J Orthop Res 4:45–56

    Google Scholar 

  20. Kayak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25:781–787

    Article  Google Scholar 

  21. Verhulp E, Van Rietbergen B, Huiskes R (2006) Comparison of micro-level and continuum-level voxel model of the proximal femur. J Biomech 39:2951–2957

    Article  CAS  PubMed  Google Scholar 

  22. Steihl JB, Jacobson D, Carrera G (2007) Morphological analysis of the proximal femur using quantitative computed tomography. Int Orthop 31:287–292. doi:10.1007/s00264-006-0182-z

    Article  Google Scholar 

  23. Wirtz DC, Pandorf T, Portheine F et al (2003) Concept and development of an orthotropic FE model of the proximal femur. J Biomech 36(2):289–293

    Article  PubMed  Google Scholar 

  24. Blemker SS, Delp SL (2004) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33:661–673

    Article  Google Scholar 

  25. Blemker SS, Asakawa DS, Gold GE et al (2007) Image based musculo-skeletal modeling: applications, advances and future opportunities. J Magn Reson Imaging 25(2):441–451

    Article  PubMed  Google Scholar 

  26. Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197:145–156

    Article  PubMed Central  PubMed  Google Scholar 

  27. Frieburg AH (1902) Wolff’s Law and the functional pathogenesis of deformity. Anatomy 124:956–972

    Google Scholar 

  28. Cowin S (1989) A resolution restriction for Wolff’s Law of trabecular architecture. Bull Hosp Joint Dis Orthop Inst 49:205–212

    CAS  Google Scholar 

  29. Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188

    CAS  PubMed  Google Scholar 

  30. Frost H (2001) From Wolff’s Law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262:398–419

    Article  CAS  PubMed  Google Scholar 

  31. Prendergast PJ, Huiskes R (1995) The biomechanics of Wolff’s Law: recent advances. Ir J Med Sci 164(2):152–154

    Article  CAS  PubMed  Google Scholar 

  32. Ruff C, Holt B, Trinkhaus E (2006) Who’s afraid of the big bad Wolf? “Wolff’s Law” and bone functional adaptation. Am J Physiol Anthropol 129:484–498

    Article  Google Scholar 

  33. Lee TC, Taylor D (1999) Bone remodeling: should we cry Wolff? Ir J Med Sci 168:102–105

    Article  CAS  PubMed  Google Scholar 

  34. Frost HM (1983) A determinant of bone architecture: the minimum effective strain. Clin Orthop Relat Res 175:286–292

    PubMed  Google Scholar 

  35. Huiskes R (1997) Validation of adaptive bone remodeling simulation models. In: Lowet G et al (eds) Bone research in biomechanics. IOS Press, Amsterdam, pp 33–48

    Google Scholar 

  36. Goodship AE, Lanyon LE, McFie H (1979) Functional adaptation of bone to increased stress. J Bone Joint Surg Am 61A:539–546

    Google Scholar 

  37. Lanyon LE, Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg Br 58B:436–443

    Google Scholar 

  38. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417

    Article  CAS  PubMed  Google Scholar 

  39. Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling; experimental research of Wolff’s Law. J Biomech 5(2):173–180

    Article  CAS  PubMed  Google Scholar 

  40. Pauwels F (1980) Short survey of the mechanical stressing of bone. In: Maquet P, Furlong R (eds) Biomechanics of the locomotor apparatus. Springer, Berlin, pp 478–503

    Chapter  Google Scholar 

  41. Hart R (2001) Bone modeling and remodeling: theories and computation. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton, pp 31–41

    Google Scholar 

  42. Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16:385–409

    Article  CAS  PubMed  Google Scholar 

  43. Oxnard CE (2004) Thoughts on bone biomechanics. Folia Primatol 75:189–201

    Article  PubMed  Google Scholar 

  44. Jansen M (1920) On bone formation. The University Press, Manchester

    Google Scholar 

  45. Garden RS (1961) The structure and function of the proximal end of the femur. J Bone Joint Surg Br 43B(3):576–589

    Google Scholar 

  46. Roesler H (1987) The history of some fundamental concepts in bone biomechanics. J Biomech 20:1025–1034

    Article  CAS  PubMed  Google Scholar 

  47. Roesler H (1981) Some historical remarks on the theory of cancellous bone structure (Wolff’s Law). In: Cowin SC (ed) Mechanical properties of bone. American Society of Mechanical Engineers, New York, pp 27–42

    Google Scholar 

  48. Meade JB, Cowin SC, Klawitte JJ et al (1984) Bone remodeling due to continuously applied loads. Calcif Tissue Int 36(Suppl):S25–S30

    Article  PubMed  Google Scholar 

  49. Rubin CT, Lanyon LE (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 5:300–310

    Article  CAS  PubMed  Google Scholar 

  50. Kenwright J, White SH (1993) A historical review of limb lengthening and bone transport. Injury 24(Suppl):S9–S19

    Article  PubMed  Google Scholar 

  51. Ling RSM, O’Connor JJ, Lu T-W et al (1996) Muscular activity and the biomechanics of the hip. Hip Int 6:91–105

    Google Scholar 

  52. Frankel VH (1986) Biomechanics of the hip joint. Instr Course Lect 35:3–9

    CAS  PubMed  Google Scholar 

  53. Dude GN, Heller M, Albingere J et al (1998) Influence of muscle forces on femoral strain distribution. J Biomech 31:841–846

    Article  Google Scholar 

  54. Fraldi M, Esposito L, Perrella G et al (2009) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol. doi:10.1007/s10237-009-0183-0

    Google Scholar 

  55. Carey EJ (1929) Studies in dynamics of histogenesis. J Radiol 13:127–168

    Article  Google Scholar 

  56. St. Clair Strange FG (1965) The hip. Heinemann, London, pp 28–51 (quoted by Ling et al)

  57. Heller MO, Bergman G, Deuretzbacher G et al (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893

    Article  CAS  PubMed  Google Scholar 

  58. Rudman KE, Aspden RM, Meakin JR (2006) Compression or tension? The stress distribution in the proximal femur. Biomed Eng 5:12. doi:10.1186/1475-925X-5-12

    CAS  Google Scholar 

  59. Dixon AF (1910) The architecture of the cancellous tissue forming the upper end of the femur. J Anat Physiol 45:223–230

    Google Scholar 

  60. Backman S (1957) The proximal end of the femur. Acta Radiol Suppl 146:1–166

    PubMed  Google Scholar 

  61. Hammer A (2010) The structure of the femoral neck: a physical dissection with emphasis on the internal trabecular system. Ann Anat 192:168–177

    Article  PubMed  Google Scholar 

  62. Shelley FJ, Anderson DD, Kolar MJ et al (1996) Physical modeling of hip joint forces in stair climbing. Proc Inst Mech Eng 210:65–68

    Article  CAS  Google Scholar 

Download references

Conflict of interest

Dr. Hammer has nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, A. The paradox of Wolff’s theories. Ir J Med Sci 184, 13–22 (2015). https://doi.org/10.1007/s11845-014-1070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-014-1070-y

Keywords

Navigation