Skip to main content
Log in

The structure and mechanical behavior of ice

  • Featured Overview
  • Feature
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Since icebergs were first proposed as potential aircraft carriers in World War II, research has led to a better understanding of the mechanical behavior of ice. While work remains, especially in relating fracture on the small scale to that on the larger scale and to the appropriate structural features, the groundwork in materials science has been laid. This paper presents an overview of the structure and mechanical behavior of polycrystalline terrestrial ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Perutz, J. Glaciol., 1 (1948), p. 95.

    Google Scholar 

  2. P.V. Hobbs, Ice Physics (London: Oxford University Press, 1974).

    Google Scholar 

  3. V.F. Petrenko and R.W. Whitworth, Physics of Ice (London: Oxford University Press, in press).

  4. T.J.O. Sanderson, Ice Mechanics Risks to Offshore Structures (London: Graham & Trotman, 1988).

    Google Scholar 

  5. W.F. Weeks, Physics of Ice-Covered Seas, ed. M. Leppäranta (Helsinki: Helsinki University Printing House, 1998), pp. 1–24 and 25–104.

    Google Scholar 

  6. B. Michel, Ice Mechanics (Quebec, Canada: Les Presses de l’Université Laval, 1978).

    Google Scholar 

  7. R.J. Arsenault et al., eds., Johannes Weertman Symposium (Warrendale, PA: TMS, 1996).

    Google Scholar 

  8. T.B. Curtin, Naval Research Reviews L, Arctic Studies (1998), p. 6.

  9. B.G. Levi, Physics Today (November 1998), p. 17.

  10. W.B. Durham, S. Kirby, and L.A. Stern, J. Geophys. Res., 102 (1997), p. 16293.

    Article  CAS  Google Scholar 

  11. L. Pauling, J. American Chemical Society, 57 (1935), p. 2680.

    Article  CAS  Google Scholar 

  12. J.D. Bernal and R.H. Fowler, J. Chem. Physics, 1 (1933), p. 515.

    Article  CAS  Google Scholar 

  13. J.W. Glen, Cold Regions Sci. and Engineering, Monograph II-C2a (Hanover, NH: U.S. Army Corps. of Engineers, 1974).

    Google Scholar 

  14. T. Hondoh et al., J. Phys. Chem., 87 (1983), p. 4044.

    Article  CAS  Google Scholar 

  15. N. Bjerrum, Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddeleiser, 27 (1951), p. 56.

    Google Scholar 

  16. F. Liu, I. Baker, and M. Dudley, Phil. Mag. A, 71 (1995), p. 15.

    CAS  Google Scholar 

  17. R.W. Whitworth, Phil. Mag. A, 41 (1980), p. 521.

    CAS  Google Scholar 

  18. J.W. Glen, Phys. Kondens. Mater., 7 (1968), p. 43.

    Article  CAS  Google Scholar 

  19. M. Oguro and A. Higashi, Physics and Chemistry of Ice, ed. E. Whalley, S.J. Jones, and L.W. Gold (Ottawa, Canada: Royal Society of Canada, 1973), p. 33.

    Google Scholar 

  20. J.F. Nye, Physics and Chemistry of Ice, ed., N. Maeno and T. Hondoh (Sapporo, Japan: Hokkaido University Press, 1992), pp. 200–205.

    Google Scholar 

  21. S. de la Chapelle et al., J. Geophys. Res. 103 (1998), p. 5091.

    Article  Google Scholar 

  22. W.F. Weeks and A.J. Gow, J. Geophys. Res., 84 (1978), p. 5105.

    Google Scholar 

  23. N.H. Fletcher, The Chemical Physics of Ice (New York: Cambridge University Press, 1970), p. 271.

    Google Scholar 

  24. P. Duval, M.F. Ashby, and I. Anderman, J. Phys. Chem., 87 (1983), p. 4066.

    Article  CAS  Google Scholar 

  25. J.W. Hutchinson, Metall. Trans. A, 8 (1977), p. 1465.

    Article  Google Scholar 

  26. L.W. Gold, Canadian J. of Physics, 44 (1966), p. 2757.

    CAS  Google Scholar 

  27. L.W. Gold, Phil. Mag., 26 (1972), p. 311.

    CAS  Google Scholar 

  28. N.K. Sinha, J. Materials Sci., 23 (1988), p. 4415.

    Article  Google Scholar 

  29. J. Weertman, Annu Rev. Earth Planet Sci., 11 (1983), p. 215.

    Article  CAS  Google Scholar 

  30. S.J. Jones, J. Glaciol., 28 (1982), p. 171.

    Google Scholar 

  31. J.-P. Nadreau and B. Michel, Cold Regions Science and Technology, 13 (1986), p. 75.

    Article  Google Scholar 

  32. R. Frederking, J. Glaciol., 18 (1977), p. 505.

    Google Scholar 

  33. J.A. Richter-Menge, J. Offshore Mechanics and Article Engineering, 113 (1991), p. 344.

    Article  Google Scholar 

  34. E.M. Schulson and S.E. Buck, Acta Metall. Mater., 43 (1995), p. 3661.

    Article  CAS  Google Scholar 

  35. E.M. Schulson and O.Y. Nickolayev, J. Geophys. Res., 100 (1995), p. 22383.

    Article  Google Scholar 

  36. J.S. Melton and E.M. Schulson, J. Geophys. Res., 103 (1998), p. 21759.

    Article  Google Scholar 

  37. D.L. Goldsby and D.L. Kohlstedt, Scripta Materialia, 37 (1997), p. 1399.

    Article  CAS  Google Scholar 

  38. E.M. Schulson et al., J. Materials Sci. Ltrs. 8 (1989), p. 1193.

    Article  CAS  Google Scholar 

  39. E.M. Schulson, P.N. Lim, and R.W. Lee, Phil. Mag. A, 49 (1984), p. 353.

    CAS  Google Scholar 

  40. J.A. Richter-Menge and K.F. Jones, J. Glaciol., 39 (1993), p. 609.

    Google Scholar 

  41. E.M. Schulson, S.G. Hoxie, and W.A. Nixon, Phil. Mag. A, 59 (1989), p. 303.

    CAS  Google Scholar 

  42. T.R. Smith and E.M. Schulson, Acta Metall. Mater., 41 (1993), p. 153.

    Article  CAS  Google Scholar 

  43. R.E. Gagnon and P.H. Gammon, J. Glaciol., 41 (1995), p. 528.

    Google Scholar 

  44. M.A. Rist and S.A.F. Murrell, J. Glaciol., 40 (1994), p. 305.

    Google Scholar 

  45. J. Weiss and E.M. Schulson, Acta Metall. Mater., 43 (1995), p. 2303.

    Article  CAS  Google Scholar 

  46. E.T. Gratz and E.M. Schulson, J. Geophysical Res., 102 (1997), p. 5091.

    Article  Google Scholar 

  47. E.M. Schulson and E.T. Gratz, Acta Mater. (in press).

  48. E.M. Schulson, Acta Metall. Mater., 38 (1990), p. 1963.

    Article  Google Scholar 

  49. S.K. Singh and I.J. Jordaan, Cold Regions Science and Technology, 24 (1996), p. 153.

    Article  Google Scholar 

  50. B. Zou, J. Xiao, and I.J. Jordann, Cold Regions Science and Technology, 24 (1996), p. 213.

    Article  Google Scholar 

  51. E.M. Schulson, D. Iliescu, and C.E. Renshaw, J. Geophys. Res. (in press).

  52. T.-F. Wong, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 19 (1982), p. 49.

    Article  Google Scholar 

  53. R.R. Gottschalk et al., J. Geophys. Res., 95 (1990), p. 21613.

    Google Scholar 

  54. S.J. Martel and D.D. Pollard, J. Geophys. Res., 94 (1989), p. 9417.

    Google Scholar 

  55. K.M. Cruikshank et al., J. Struct. Geol., 13 (1991), p. 865.

    Article  Google Scholar 

  56. H.J. Frost, Proc. in Joint Applied Mechanics and Materials Summer Conference, ed. J.P. Dempsey and Y.D.S. Rajapakse (Los Angeles, CA: University of California, 1995), pp. 1–8.

    Google Scholar 

  57. R.C. Picu, V. Gupta, and H.J. Frost, J. Geophys. Res., 99 (1994), p. 11775.

    Article  Google Scholar 

  58. R.C. Picu and V.J. Gupta, Acta Metall. Mater., 43 (1995), p. 3791.

    Article  CAS  Google Scholar 

  59. J. Weiss, E.M. Schulson, and H.J. Frost, Phil. Mag. A, 73 (1996), p. 1385.

    CAS  Google Scholar 

  60. M.D. Thouless et al., Acta Metall., 35 (1987), p. 1333.

    Article  CAS  Google Scholar 

  61. J.P. Dempsey, Ice Structure Interactions, ed. S.J. Jones (New York: Springer-Verlag, 1991), p. 109.

    Google Scholar 

  62. D.E. Jones, F.E. Kennedy, and E.M. Schulson, Ann. Glaciol., 15 (1991), p. 242.

    Google Scholar 

  63. M.F. Ashby and S.D. Hallam, Acta Metall., 34 (1986), p. 497.

    Article  CAS  Google Scholar 

  64. C.G. Sammis and M.F. Ashby, Acta Metall., 34 (1986), p. 511.

    Article  CAS  Google Scholar 

  65. Z.P. Bazant and Y. Xiang, J. Eng. Mech., 2 (1997), p. 162.

    Google Scholar 

  66. H. Riedel and J.R. Rice, ASTM-STP-7700, (1980), p. 112.

  67. R.A. Batto and E.M. Schulson, Acta Metall. Mater., 41 (1993), p. 2219.

    Article  CAS  Google Scholar 

  68. D.M. Cole, Proc. Fourth Int. Symp. on Offshore Mech. Arctic Engng. (New York: ASME, 1985), p. 220.

    Google Scholar 

  69. J.R. Marko and R.E. Thomson, J. Geophys. Res., 82 (1977), p. 979.

    Google Scholar 

  70. E.M. Schulson and W.D. Hibler, III, J. Glaciol., 37 (1991), p. 319.

    Google Scholar 

  71. J.A. Richter-Menge et al., Proc. of the ASYS Conference on the Dynamics of the Arctic Climate System, ed. P. Lemke (Gotteborg, Sweden: World Meterological Org., 1996), pp. 327–331.

    Google Scholar 

  72. J. Weiss and M. Gay, J. Geophys. Res. 103 (1998), p. 24005.

    Article  Google Scholar 

  73. D.E. Moore and D.A. Lockner, J. Struct. Geol., 17 (1995), p. 95.

    Article  Google Scholar 

  74. R. Bilham and P. Williams, Geophys. Res. Lett., 12 (1985), p. 557.

    Google Scholar 

  75. W.B. Tucker, III and D.K. Perovich, Cold Regions Science and Technology, 20 (1992), p. 119.

    Article  CAS  Google Scholar 

  76. J.P. Dempsey, contribution to Research Trends in Solid Mechanics, a report from U.S. National Committee on Theoretical and Applied Mechanics (in press).

  77. J.P. Dempsey, Johannes Weertman Symposium, ed. R.J. Arsenault et al. (Warrendale, PA: TMS, 1996), p. 351.

    Google Scholar 

  78. R.W. Lee (M.S. thesis, Thayer School of Engineering, Dartmouth College, 1985).

  79. E.M. Schulson and N.P. Cannon, Proc. IAHR Ice Symp. (Hamburg, Germany: Hamburgische, Schiffbau-Versuchanstahlt GmbH, 1984), p. 24.

    Google Scholar 

  80. I. Hawkes and M. Mellor, J. Glaciol., 11 (1972), p. 103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: A hypertext-enhanced version of this paper can be found on JOM’s web site at www.tms.org/pubs/journals/JOM/9902/Schulson-9902.html.

Author’s Note: The Ice Research Laboratory at Dartmouth College was founded by the author in 1983 through a development grant from Mobil Corporation. It was expanded in 1984 through an Army Research Office-URIP, expanded again in 1986 through an Office of Naval Research-URI, and expanded again in 1994 through a second Army Research Office-URIP. The IRL is a materials research facility housed within cold rooms. The laboratory currently consists of ten separate cold rooms, some capable of reaching below −40°C. Situated within are facilities for growing and characterizing ice of different kinds, preparing test specimens, and measuring mechanical and electrical properties.

For more information, contact E.M. Schulson, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; (603) 646-2888; fax (603) 646-3856; e-mail erland.schulson@dartmouth.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulson, E.M. The structure and mechanical behavior of ice. JOM 51, 21–27 (1999). https://doi.org/10.1007/s11837-999-0206-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0206-4

Keywords

Navigation