Skip to main content
Log in

Creep studies for zircaloy life prediction in water reactors

  • Research Summary
  • Nuclear Reactor Life Extension
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Zirconium alloys, commonly used as cladding tubes in water reactors, undergo complex biaxial creep deformation. The anisotropic nature of these metals makes it relatively complex to predict their dimensional changes in-reactor. These alloys exhibit transients in creep mechanisms as stress levels change. The underlying creep mechanisms and creep anisotropy depend on the alloy composition as well as the thermomechanical treatment. The anisotropic biaxial creep of cold-worked and recrystallized Zircaloy-4 in terms of Hill’s generalized stress formulation is described, and the temperature and stress dependencies of the steady-state creep rate are reviewed. Predictive models that incorporate anelastic strain are used for transient and transients in creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Murty, Materials Forum, 15 (1991), p. 217.

    Google Scholar 

  2. K.L. Murty, Creep Behavior of Advanced Materials for the 21st Century, ed. R.S. Misra, A.K. Mukherjee, and K.L. Murty (Warrendale, PA: TMS, 1999), pp. 285–294.

    Google Scholar 

  3. C.S. Cook et al., Zirconium in the Nuclear Industry: Ninth Symposium, ed. C.M. Eucken and A.M. Garde (Philadelphia, PA: ASTM STP 1132, 1991), p. 80.

    Google Scholar 

  4. K.L. Murty, Zirconium in the Nuclear Industry: Eighth Symposium, ed. L.F.P. Van Swam and C.M. Euken (Philadelphia, PA: ASTM STP 1023, 1989), p. 570.

    Google Scholar 

  5. K.L. Murty, B.L. Adams, and D.L. Baty, Proc. 10th Int. Conf. on Metallic Corrosion (Madras, India: Trans. Tech. Pub. 1987).

    Google Scholar 

  6. K.L. Murty, Creep and Fracture of Engineering Materials and Structures, ed. J.C. Earthman and F.A. Mohamed (Warrendale, PA: TMS, 1997), pp. 69–78.

    Google Scholar 

  7. J. Ravi, Wiratmo, and K.L. Murty, Nuclear Engineering and Design, 156 (1995), p. 359.

    Article  Google Scholar 

  8. K.L. Murty and S.T. Mahmood, Zirconium in the Nuclear Industry: Ninth Symposium, ed. C.M. Euken and A.M. Garde (Philadelphia, PA: ASTM STP 1132, 1991), p. 198.

    Google Scholar 

  9. K.L. Murty, Trans IIM, 50 (1997), p. 533.

    CAS  Google Scholar 

  10. K.L. Murty and K.K. Yoon, Scripta Met., 13 (1979), p. 299.

    Article  CAS  Google Scholar 

  11. J. Ravi and K.L. Murty, Johannes Weertman Symposium, ed. R.J. Arsenault et al. (Warrendale, PA: TMS, 1996), pp. 203–209.

    Google Scholar 

  12. G.P. Sabol et al., 8th International Symposium on Zirconium in the Nuclear Industry, ed. L.F.P. Van Swam and C.M. Eucken (Philadelphia, PA, ASTM STP 1023, 1989), p. 227.

    Google Scholar 

  13. K.L. Murty and B.L. Adams, Mat. Sci. Eng., 70 (1985), p. 169.

    Article  CAS  Google Scholar 

  14. K.L. Murty, Trans. IIM, 39 (1986), p. 357.

    CAS  Google Scholar 

  15. K.L. Murty and S.G. McDonald, Structural Mechanical in Reactor Technology (Luxembourg: Commission of the European Communities, 1981), paper C2/3.

    Google Scholar 

  16. H. Stehle, E. Steinberg, and E. Tenckhoff, Zirconium in the Nuclear Industry: Third International Conference (Philadelphia, PA: ASTM STP 633, 1977), p. 486.

    Google Scholar 

  17. W.L. Daugherty and K.L. Murty, Nuclear Technology, 80 (1988), p. 443.

    CAS  Google Scholar 

  18. P. Delobelle et al., Zirconium in the Nuclear Industry: Eleventh International Symposium, ed. E.R. Bradley and G.P. Sabol (Philadelphia, PA: ASTM STP 1295, 1996), p. 373.

    Google Scholar 

  19. K.L. Murty, M. Gold, and A.L. Ruoff, J. Appl. Phys., 41 (1970), p. 4917.

    Article  CAS  Google Scholar 

  20. K.L. Murty, G.S. Clevinger, and T.P. Papazoglou, Structural Mechanical in Reactor Technology (Luxembourg: Commission of the European Communities, 1977), paper C3/4.

    Google Scholar 

  21. H. Yang et al., Proc. 46th Electronic Components and Technology Conference (ECTC) (May 1996), pp. 1136–1142.

  22. J.E. Bird, A.K. Mukherjee, and J.E. Dorn, Quantitative Relation Between Structure and Properties (Jerusalem: Israel University Press, 1969), pp. 255–452.

    Google Scholar 

  23. F.H. Huang et al., J. Nucl. Mater., 79 (1979), p. 214.

    Article  CAS  Google Scholar 

  24. G.S. Clevinger, B.L. Adams, and K.L. Murty, Zirconium in the Nuclear Industry (Philadelphia, PA: ASTM STP 681, 1979), p. 189.

    Google Scholar 

  25. M. Limback and T. Andersson, Zirconium in the Nuclear Industry: Eleventh International Symposium, ed. E.R. Bradley and G.P. Sabol (Philadelphia, PA: ASTM STP 1295, 1996), p. 1295.

    Google Scholar 

  26. R.B. Adamson, General Electric Company, private communication (1995).

  27. A.J. Ardell and O.D. Sherby, Trans AIME, 239 (1967), p. 1547.

    CAS  Google Scholar 

  28. B.L. Adams and K.L. Murty, Mat. Sci. Eng., 70 (1985), p. 181.

    Article  CAS  Google Scholar 

  29. M. Nakatsuka and M. Nagai, J. Nucl. Sci. Tech., 24 (1987), p. 832.

    Article  CAS  Google Scholar 

  30. J. Weertman, J. Appl. Phys., 28 (1957), p. 1185.

    Article  Google Scholar 

  31. O.D. Sherby and P.M. Burke, Progr. Mat. Sci., 13 (1967), p. 325.

    Google Scholar 

  32. W.R. Thorpe and I.O. Smith, J. Nucl. Mater., 75 (1978), p. 209.

    Article  CAS  Google Scholar 

  33. K.L. Murty, Scripta Met., 7 (1973), p. 899.

    Article  CAS  Google Scholar 

  34. T. Endo, T. Shimada, and T.G. Langdon, Acta Met., 32 (1984), p. 199.

    Article  Google Scholar 

  35. K.L. Murty and O. Kanert, J. Appl. Phys., 67 (1990), p. 2866.

    Article  CAS  Google Scholar 

  36. B.V. Tanikella, “Anisotropic Biaxial Creep of Zircaloy-4 and Cp-Titanium Tubing” (Masters thesis, North Carolina State University, 1994).

  37. Y. Wang, “Mechanical Anisotropy of Zircaloy-4: Temperature and Strain Rate Effects” (Doctoral thesis, North Carolina State University, 1998).

  38. K.L. Murty, J. Ravi, and S.T. Mahmood, Nucl. Eng. Des., 156 (1995), p. 359.

    Article  Google Scholar 

  39. J.S. Armijo, L.F. Coffin, and H.S. Rosenbaum, Zirconium in the Nuclear Industry (Philadelphia, PA: ASTM STP 1245, 1994), p. 3.

    Google Scholar 

  40. J.S. Armijo, H.S. Rosenbaum, and C.D. Williams, U.S. patent 5,383,228 (17 January 1995).

  41. E.A. Preble and K.L. Murty, Proc. Int. Conf. on Corrosion (CORCON-97), ed. A.S. Khanna et al. (Lausanne: Elsevier, 1998), pp. 609–614.

    Google Scholar 

  42. B. Cheng and R.B. Adamson, Zirconium in the Nuclear Industry (Philadelphia, PA: ASTM STP 939, 1987), p. 387.

    Google Scholar 

  43. C.D. Williams et al., Zirconium in the Nuclear Industry (Philadelphia, PA: ASTM STP 1295, 1996), p. 676.

    Google Scholar 

  44. M. Peehs and J. Fleisch, J. Nucl. Mat., 137 (1986), p. 190.

    Article  CAS  Google Scholar 

  45. B.A. Chin and E.R. Gilbert, Nucl. Tech., 85 (1989), p. 57.

    CAS  Google Scholar 

  46. M. Mayuzumi and T. Onchi, Nucl. Tech., 93 (1991), p. 382.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact K.L. Murty, North Carolina State University, Department of Nuclear Engineering, Campus Box 7909, Raleigh, North Carolina 27695-7909; (919) 515-3657; fax (919) 515-5115; e-mail murty@ncsu.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murty, K.L. Creep studies for zircaloy life prediction in water reactors. JOM 51, 32–39 (1999). https://doi.org/10.1007/s11837-999-0184-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0184-6

Keywords

Navigation