Skip to main content

Advertisement

Log in

Using high-temperature superconductors for levitation applications

  • Overview
  • Applying Superconductors
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Melt-textured, bulk high-temperature superconductors are finding increasing uses in superconducting bearings, flywheel energy storage, and other levitational applications. This article reviews the use of these materials in magnetic-levitation applications. The behavior of levitational force, stiffness, damping, and rotational losses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Arkadiev, J. Phys. USSR, 9 (1945), p. 148.

    Google Scholar 

  2. V. Arkadiev, Nature, 160 (1947), p. 330.

    Google Scholar 

  3. F.C. Moon, Superconducting Levitation (New York: John Wiley and Sons, 1994).

    Google Scholar 

  4. T.D. Rossing and J.R. Hull, The Physics Teacher, 29 (1991), p. 552.

    Article  Google Scholar 

  5. J.R. Hull, “Magnetic Levitation,” Encyclopedia of Electrical and Electronics Engineering, ed. J.G. Webster (New York: John Wiley and Sons, 1998).

    Google Scholar 

  6. M.K. Wu et al., Phys. Rev. Lett., 58 (1987), p. 908.

    Article  CAS  Google Scholar 

  7. E.H. Brandt, Science, 243 (1989), p. 349.

    Article  Google Scholar 

  8. E.H. Brandt, Am. J. Phys., 58 (1990), p. 43.

    Article  Google Scholar 

  9. F.C. Moon and J.R. Hull, Proc. Intersoc. Energy Conv. Engrg. Conf., 3 (1990), p. 425.

    Article  Google Scholar 

  10. J.R. Hull et al., Proc. Intersoc. Energy Conv. Engrg. Conf., 3 (1990), p. 432.

    Article  Google Scholar 

  11. M. Murakami, Melt Processed High-Temperature Superconductors (Singapore: World Scientific, 1992).

    Google Scholar 

  12. M. Murakami et al., Supercond. Sci. Technol., 9 (1996), p. 1015.

    Article  CAS  Google Scholar 

  13. X. Yao and Y. Shiohara, Supercond. Sci. Technol., 10 (1997), p. 249.

    Article  CAS  Google Scholar 

  14. M. Muraldiha et al., Supercond. Sci. Technol., 11 (1998), p. 1349.

    Article  Google Scholar 

  15. C-J. Kim and G-W. Hong, Supercond. Sci. Technol., 12 (1999), p. R27.

  16. M. Murakami, ed., Appl. Supercond., 6 (2–5) (1998).

  17. D.A. Cardwell et al., eds., Mater. Sci. Engrg., 53B (1,2) (1998).

  18. T. Habisreuther et al., JOM, 50 (10) (1998), p. 31.

    CAS  Google Scholar 

  19. J.R. Hull, Supercond. Sci. Technol., 12 (1999).

  20. R. Weinstein et al., Mater. Sci. Engrg., B53 (1998), p. 38.

    Article  CAS  Google Scholar 

  21. B.A. Tent et al., Physica C, 309 (1998), p. 89.

    Article  CAS  Google Scholar 

  22. B.R. Weinberger, Appl. Supercond., 2 (1994), p. 511.

    Article  Google Scholar 

  23. B. Lucke et al., Physica C, 259 (1996), p. 151.

    Article  Google Scholar 

  24. J.R. Hull, Adv. Supercond., 10 (1997), p. 1401.

    Google Scholar 

  25. J.R. Hull and A. Cansiz, J. Appl. Phys. (1999).

  26. T. Sugiura and H. Fujimori, IEEE Trans. Magn., 32 (1996), p. 1066.

    Article  Google Scholar 

  27. T. Sugiura et al., Adv. Supercond., 10 (1997), p. 1349.

    Google Scholar 

  28. S.A. Basinger et al., Appl. Phys. Lett., 57 (1990), p. 2942.

    Article  CAS  Google Scholar 

  29. J.R. Hull et al., J. Appl. Phys., 72 (1992), p. 2089.

    Article  CAS  Google Scholar 

  30. T.H. Johansen et al., J. Appl. Phys., 70 (1991), p. 7496.

    Article  CAS  Google Scholar 

  31. Z.J. Yang and J.R. Hull, IEEE Trans. Appl. Supercond., 7 (1997), p. 318.

    Article  Google Scholar 

  32. A.A. Kordyuk and V.V. Nemosckalenko, IEEE Trans. Appl. Supercond., 7 (1997), p. 318.

    Article  Google Scholar 

  33. C.E. Rossman et al., Appl. Phys. Lett., 70 (1997), p. 255.

    Article  CAS  Google Scholar 

  34. C.P. Bean, Rev. Mod. Phys., 36 (1964), p. 31.

    Article  Google Scholar 

  35. L.C. Davis et al., J. Appl. Phys., 64 (1988), p. 4212.

    Article  CAS  Google Scholar 

  36. C. Navau and A. Sanchez, Phys. Rev. B, 58 (1998), p. 963.

    Article  CAS  Google Scholar 

  37. Z.J. Yang, J. Supercond., 5 (1992), p. 259.

    Article  Google Scholar 

  38. A.A. Kordyuk, J. Appl. Phys., 83 (1998), p. 610.

    Article  CAS  Google Scholar 

  39. S. Evershed, J. Inst. Elect. Eng., 29 (1900), p. 743.

    Google Scholar 

  40. C.K. McMichael et al., Appl. Phys. Lett., 60 (1992), p. 1893.

    Article  Google Scholar 

  41. J.R. Hull et al., Appl. Phys. Lett., 70 (1997), p. 655.

    Article  CAS  Google Scholar 

  42. Z. Xia et al., IEEE Trans. Appl. Supercond., 5 (1995), p. 622.

    Article  Google Scholar 

  43. W. Hennig et al., Appl. Phys. Lett., 72 (1998), p. 3059.

    Article  CAS  Google Scholar 

  44. R. Weinstein et al., Mater. Sci. Engrg. B, 53 (1998), p. 38.

    Article  Google Scholar 

  45. M. Morita et al., Mater. Sci. Engrg. B, 53 (1998), p. 159.

    Article  Google Scholar 

  46. S. Gruss et al., IEEE Trans. Magn., 34 (1998), p. 2099.

    Article  CAS  Google Scholar 

  47. J.R. Hull et al., IEEE Trans. Appl. Supercond., 5 (1995), p. 626.

    Article  Google Scholar 

  48. Y. Iwasa and H. Lee, Cryogenics, 37 (1997), p. 807.

    Article  CAS  Google Scholar 

  49. J.R. Hull et al., J. Appl. Phys., 76 (1994), p. 577.

    Article  Google Scholar 

  50. J.R. Hull et al., J. Appl. Phys., 78 (1995), p. 6833.

    Article  CAS  Google Scholar 

  51. A.N. Terentiev and A.A. Kuznetsov, Physica C, 195 (1992), p. 41.

    Article  Google Scholar 

  52. T. Hikihara and F.C. Moon, Physica C, 250 (1995), p. 121.

    Article  CAS  Google Scholar 

  53. T.A. Coombs and A.M. Campbell, Physica C, 256 (1996), p. 298.

    Article  CAS  Google Scholar 

  54. J.R. Hull, Spectrum, 34 (7) (1997), p. 20.

    Article  Google Scholar 

  55. J.R. Hull et al., Appl. Supercond., 2 (1994), p. 449.

    Article  Google Scholar 

  56. H.J. Bornemann et al., Appl. Supercond., 2 (1994), p. 439.

    Article  Google Scholar 

  57. Q.Y. Chen et al., Appl. Supercond., 2 (1994), p. 457.

    Article  Google Scholar 

  58. M. Minami et al., Adv. Supercond., 10 (1997), p. 1305.

    Google Scholar 

  59. Y. Miyagawa et al., IEEE Trans. Appl. Supercond., 9 (1999).

  60. T.A. Coombs et al., Mater. Sci. Engng., B53 (1998), p. 225.

    CAS  Google Scholar 

  61. R. Decher et al., Appl. Supercond., 1 (1993), p. 1265.

    Article  Google Scholar 

  62. M. Lamb et al., IEEE Trans. Appl. Supercond., 5 (1995), p. 638.

    Article  Google Scholar 

  63. E. Lee et al., IEEE Trans. Appl. Supercond., 9 (1999).

  64. A.D. Chew et al., Appl. Supercond., 3 (1995), p. 327.

    Article  CAS  Google Scholar 

  65. J.R. Hull and T.M. Mulcahy, IEEE Trans. Appl. Supercond., 9 (1999).

  66. R. Weinstein et al., 3rd Internat. Symp. Magn. Susp. Tech. (Tallahassee, FL: 1995).

  67. H. Ishigaki et al., IEEE Trans. Appl. Supercond., 3 (1993), p. 404.

    Article  Google Scholar 

  68. K.B. Ma et al., IEEE Trans. Appl. Supercond., 3 (1993), p. 388.

    Article  Google Scholar 

  69. G. Binnig et al., Appl. Phys. Lett., 40 (1982), p. 178.

    Article  CAS  Google Scholar 

  70. H. Ogiwara et al., Appl. Supercond., 1 (1993), p. 1185.

    Article  CAS  Google Scholar 

  71. H. Minami and J. Yuyama, Jpn. J. Appl. Phys., 34 (1995), p. 346.

    Article  CAS  Google Scholar 

  72. Y.-K. Kim et al., Sensors and Actuators, 20 (1989), p. 33.

    Article  Google Scholar 

  73. J. Bankuti et al., IEEE Trans. Magn., 32 (1996), p. 2288.

    Article  Google Scholar 

  74. I.-G. Chen et al., J. Appl. Phys., 81 (1997), p. 4272.

    Article  CAS  Google Scholar 

  75. A. Senba, IEEE Trans. Magn., 32 (1996), p. 5049.

    Article  Google Scholar 

  76. K. Swada, Adv. Supercond., 10 (1997), p. 1313.

    Google Scholar 

  77. C. P. Britcher, Adv. Supercond., 10 (1997), p. 1319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact J.R. Hull, Argonne National Laboratory, ET-335, Argonne, Illinois 60439; (630) 252-8580; fax (630) 252-5568; e-mail jhull@anl.gov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, J.R. Using high-temperature superconductors for levitation applications. JOM 51, 13–18 (1999). https://doi.org/10.1007/s11837-999-0101-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0101-z

Keywords

Navigation