Skip to main content
Log in

Chemical vapor deposited diamond for thermal management

  • Overview
  • Thermal Management
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The record-high thermal conductivity of high-quality diamond makes it a natural choice for many applications in thermal management. The columnar microstructure of chemical-vapor-deposited diamond thick films, however, causes anisotropy and a strong gradient in the conductivity, both of which can be understood in terms of phonon-scattering defects that aggregate near grain boundaries. Techniques to take maximum advantage of the high thermal conductivity include the removal of fine-grained low-conductivity material near the substrate surface and the provision of excellent thermal contact between the diamond and heat sources or sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Berman, The Properties of Diamond, ed. J.E. Field (London: Academic Press, 1979), pp. 3–22.

    Google Scholar 

  2. R. Berman, P.R.W. Hudson, and M. Martinez, J. Phys. C: Solid State Phys., 8 (1975), p. L430.

    Google Scholar 

  3. J.C. Angus, H.A. Will, and W.S. Stanko, J. Appl. Phys., 39 (1968), p. 2915.

    Article  CAS  Google Scholar 

  4. B.V. Spitsyn, L.L. Bouilov, and B.V. Deryagin, J. Cryst. Growth, 52 (1981), p. 219.

    Article  CAS  Google Scholar 

  5. P.K. Bachmann and W. van Enchevort, Diamond Relat. Mater., 1 (1992), p. 1021.

    Article  CAS  Google Scholar 

  6. A. Sawabe and T. Inuzuka, Thin Solid Films, 137 (1986), p. 89.

    Article  CAS  Google Scholar 

  7. J.E. Graebner et al., Nature, 359 (1992), p. 401.

    Article  CAS  Google Scholar 

  8. J.E. Graebner et al., Phys. Rev. B, 50 (1994), p. 3702.

    Article  CAS  Google Scholar 

  9. F.P. Bundy et al., Nature, 176 (1955), p. 51.

    Article  CAS  Google Scholar 

  10. M.N. Touzelbaev and K.E. Goodson, Diamond Relat. Mater., 7 (1998), p. 1.

    Article  CAS  Google Scholar 

  11. J.E. Graebner et al., Appl. Phys. Lett., 60 (1992), p. 1576.

    Article  CAS  Google Scholar 

  12. J.E. Graebner et al, J. Appl. Phys., 76 (1994), p. 1552.

    Article  CAS  Google Scholar 

  13. K.E. Goodson, O.W. Käding, and R. Zachai, ASME HTD Proceedings, 292 (1994), p. 83.

    CAS  Google Scholar 

  14. K.E. Goodson, ASME/JSME Thermal Engineering Conference, 4 (1995), p. 183.

    CAS  Google Scholar 

  15. J.E. Graebner, Diamond Films Technol., 3 (1993), p. 77.

    CAS  Google Scholar 

  16. J.E. Graebner et al., J. Appl. Phys., 71 (1992), p. 3143.

    Article  CAS  Google Scholar 

  17. O.W. Käding et al., Diamond Relat. Mater., 2 (1993), p 1185.

    Article  Google Scholar 

  18. O.W. Käding et al., Diamond Relat. Mater., 3 (1994), p. 1178.

    Article  Google Scholar 

  19. J.E. Graebner et al., Diamond Relat. Mater., 5 (1996), p. 693.

    Article  CAS  Google Scholar 

  20. K. Plamann et al., Diamond Relat. Mater., 3 (1994), p. 752.

    Article  CAS  Google Scholar 

  21. D. Fournier and K. Plamann, Diamond Relat. Mater., 4 (1995), p. 809.

    Article  CAS  Google Scholar 

  22. K.E. Goodson et al., J. Appl. Phys., 77 (1995), p. 1385.

    Article  CAS  Google Scholar 

  23. H. Verhoeven et al., Appl. Phys. Lett., 69 (1996), p. 1562.

    Article  CAS  Google Scholar 

  24. H. Verhoeven et al., Diamond Relat. Mater., 6 (1997), p. 298.

    Article  CAS  Google Scholar 

  25. H. Verhoeven et al., Appl. Phys. Lett., 71 (1997), p. 1329.

    Article  CAS  Google Scholar 

  26. C. Wild et al., Diamond Relat. Mater., 3 (1994), p. 373.

    Article  CAS  Google Scholar 

  27. M.A. Prelas et al., eds., Handbook of Industrial Diamonds and Diamond Films (New York: Marcel Dekker, 1997).

    Google Scholar 

  28. S. Jin et al., Appl. Phys. Lett., 60 (1992), p. 1948.

    Article  Google Scholar 

  29. S. Jin et al., Diamond Relat. Mater., 1 (1992), p. 949.

    Article  CAS  Google Scholar 

  30. T.B. Massalski, ed., Binary Alloy Phase Diagrams, 2nd ed. (Metals Park, OH: ASM, 1991), p. 860.

    Google Scholar 

  31. S. Jin et al., Nature, 362 (1993), p. 822.

    Article  CAS  Google Scholar 

  32. S. Jin et al., Appl. Phys. Lett., 63 (1983), p. 622.

    Article  Google Scholar 

  33. S. Jin, W. Zhu, and J.E. Graebner, Applications of Diamond Films and Related Materials, eds. A. Feldman et al., NIST special publication 885 (Gaithersburg, MD: NIST, 1995), p. 209.

    Google Scholar 

  34. M. McCormack et al., Diamond Relat. Mater., 3 (1994), p. 254.

    Article  CAS  Google Scholar 

  35. A. Katz et al., Materials Chem. Phys., 33 (1993), p. 281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J.E. Graebner earned his Ph.D in physics at Northwestern University in 1967. He is a member of the technical staff at Bell Laboratories, Lucent Technologies.

S. Jin earned his Ph.D in materials science at the University of California at Berkeley in 1974. He is currently technical manager at Bell Laboratories, Lucent Technologies. Dr. Jin is also a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graebner, J.E., Jin, S. Chemical vapor deposited diamond for thermal management. JOM 50, 52–55 (1998). https://doi.org/10.1007/s11837-998-0129-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-998-0129-5

Keywords

Navigation