Skip to main content
Log in

Optoelectronic and Photonic Characteristics of Al/p-Si Diode with Boric Acid-Doped Zinc Oxide Interlayer

  • Recent Advancements in Optoelectronics & Photonics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Al/ZnO/p-Si diodes have been fabricated using different doping concentrations of a boric acid (H3BO3)-doped zinc oxide (ZnO) interlayer. The boric acid-doped ZnO films were obtained by the sol–gel method and coated by the spin-coating technique. The optoelectronic and electronic properties of the prepared diodes were studied under different illumination and frequency conditions. Current measurements of the diodes under both dark and illumination indicate that they exhibit a photovoltaic behavior. The diode with 5 wt.% H3BO3-doped ZnO interlayer showed the best diode properties with a rectification ratio of 4.23 × 104 at ± 5 V. Also, the photocurrent, photoconductance, and photocapacitance transients of the diodes prove that they exhibit both photodiode and photocapacitor behavior. In addition, the capacitance and conductance measurements of the diodes were carried out over a wide frequency range. The results denote that the generated diodes can be utilized as photo-diode/capacitors in optoelectronic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.K. Yong, H. Kang, W. Lee, C.W. Lee, J. Park, and H.S. Lee, Mater. Sci. Semicond. Process. 33, 154 (2015).

    Google Scholar 

  2. N.M. Ravindra, S. Abedrabbo, O.H. Gokce, F. Tong, A. Patel, R. Velagapudi, G.D. Williamson, and W.P. Maszara, IEEE Transac. Compon. Packag. Manufac. Technol. Part A 21, 441 (1998).

    Google Scholar 

  3. S. Berleb, A.G. Muckl, and W. Brutting, Synth. Met. 111, 341 (2000).

    Google Scholar 

  4. A. Karabulut, A. Türüt, and Ş Karataş, J. Mol. Struct. 1157, 513 (2018).

    Google Scholar 

  5. K.J. Saji, Y.P. Venkata Subbaiah, K. Tian, and A. Tiwari, Thin Solid Film 605, 193 (2016).

    Google Scholar 

  6. A. Alyamani, A. Tataroglu, L. El Mir, A. Ahmed, H. Al-Ghamdi, W. Dahman, A. Farooq, and F. Yakuphanoglu, Appl. Phys. A 122, 297 (2016).

    Google Scholar 

  7. V. Pandey, N. Singh, and F.Z. Haque, J. Adv. Phys. 6, 358 (2017).

    Google Scholar 

  8. Y. Caglar, S. Ilıcan, and M. Caglar, Mater. Sci. Poland 35, 824 (2017).

    Google Scholar 

  9. A. Hafdallah, F. Yanineb, M.S. Aida, and N. Attaf, J. Alloys Compd. 509, 7267 (2011).

    Google Scholar 

  10. A.M. Alsaad, A.A. Ahmad, I.A. Qattan, Q.M. Al-Bataineh, and Z. Albataineh, Crys. 10, 252 (2020).

    Google Scholar 

  11. S. Jana, A.S. Vuk, A. Mallick, B. Orel, and P.K. Biswas, Mater. Res. Bullet. 46, 2392 (2011).

    Google Scholar 

  12. M.Y.A. Rahman, L. Roza, A.A. Umar, and M.M. Salleh, J. Alloys Compd. 648, 86 (2015).

    Google Scholar 

  13. G.I. Buyuk and S. Ilican, Superlat. Microst. 145, 106605 (2020).

    Google Scholar 

  14. H.S. Madavani, H.D. Jahromi, and A.A. Ziabari, Optik 268, 169789 (2022).

    Google Scholar 

  15. H.R. Sadeghi Madavani, H. Dehdashti Jahromi, A. Abdolahzadeh Ziabari, and A. Kamaly, Phys. Status Solidi (A) 220, 2200206 (2023).

    Google Scholar 

  16. A. Karabulut, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, and F. Yakuphanoglu, Mater. Sci. Semicond. Proces. 134, 106034 (2021).

    Google Scholar 

  17. T. Hurma, J. Mol. Struct. 1189, 1 (2019).

    Google Scholar 

  18. Y.P. Perelygin and D.Y. Chistyakov, Russ. J. Appl. Chem. 79, 2041 (2006).

    Google Scholar 

  19. Ö. Yagci, S.S. Yesilkaya, S.A. Yüksel, F. Ongül, N.M. Varal, M. Kus, S. Günes, and O. Icelli, Synth. Metals 212, 12 (2016).

    Google Scholar 

  20. B.A. Gozeh, A. Karabulut, A. Yildiz, and F. Yakuphanoglu, J. Alloys Compd. 732, 16 (2018).

    Google Scholar 

  21. A. Karabulut, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, and F. Yakuphanoglu, J. Elect. Mater. 47, 7159 (2018).

    Google Scholar 

  22. S. Esposito, Materials 12, 668 (2019).

    Google Scholar 

  23. D. Levy and M. Zayat, The Sol-Gel Handbook: Synthesis, Characterization and Applications (Wiley-VCH, Weinheim, 2015).

    Google Scholar 

  24. C.J. Brinker and G. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press Inc, New York, 1990).

    Google Scholar 

  25. A. Abdullah, E.M. Benchafia, D. Choi, and S. Abedrabbo, Nanomaterials 13, 1508 (2023).

    Google Scholar 

  26. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  27. E.H. Rhoderick and R.H. Williams, Metal Semiconductor Contacts (Clarendon Press, Oxford, 1988).

    Google Scholar 

  28. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, New York, 2003).

    Google Scholar 

  29. A. Tataroglu, K. Koran, E. Calıskan, A.G. Al-Sehemi, A. Orhan Gorgulu, A. Al-Ghamdi, and F. Yakuphanoglu, Silicon 11, 1275 (2019).

    Google Scholar 

  30. C. Aksu Canbay, A. Tataroglu, A. Dere, G. Abdullah, A. Al-Sehemi, A.A. Karabulut, A. Al-Ghamdi, and F. Yakuphanoglu, J. Alloys Compd. 888, 161600 (2021).

    Google Scholar 

  31. D. Wood, Optoelectronic Semiconductor Devices (Prentice Hall, New York, 1994).

    Google Scholar 

  32. A. Kumar, A. Kumar, K.K. Sharma, and S. Chand, Superlattices Microst. 128, 373 (2019).

    Google Scholar 

  33. K.S. Mohan, A. Panneerselvam, R. Marnadu, J. Chandrasekaran, Md. Shkir, and A. Tataroglu, Inorganic Chem. Commun. 129, 108646 (2021).

    Google Scholar 

  34. A. Tataroglu, A. Buyukbas Ulusan, Ş Altındal, and Y. Azizian-Kalandaragh, J. Inorg. Organomet. Polym. Mater. 31, 1668 (2021).

    Google Scholar 

  35. N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, and M.S. Aida, Mater. Sci. Semicond. Process. 14, 229 (2011).

    Google Scholar 

  36. P. Singh and N.M. Ravindra, Emerg. Mater. Res. 1, 33 (2012).

    Google Scholar 

  37. A. Buyukbas Ulusan, A. Tataroglu, S. Altındal, and Y. Azizian-Kalandaragh, J. Mater. Sci.: Mater. Electron. 32, 15732 (2021).

    Google Scholar 

  38. R.H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  39. I.M. Ashraf, M. Farouk, F. Ahmad, M.M. El Okr, M.M. Abdel-Aziz, and E.S. Yousef, Chalcogenide Lett. 16, 327 (2019).

    Google Scholar 

  40. A. Dere, B. Coskun, A. Tataroğlu, A.G. Al-Sehemi, A.A. Al-Ghamdi, H.M.A. Alateeq, W.A. Rabia Qindeel, and F.Y. Farooq, Phys. B 545, 86 (2018).

    Google Scholar 

  41. R. Raj, H. Gupta, and L.P. Purohit, Bull. Mater. Sci. 44, 165 (2021).

    Google Scholar 

  42. G. Gordillo, C.A. Otalora, and A.A. Ramirez, Phys. Chem. Chem. Phys. 18, 32862 (2016).

    Google Scholar 

  43. L. Zhou, S. Guo, X. Zhao, Y. He, L. Chen, X. Ouyang, and I.E.E.E. Photon, Technol. Lett. 31, 1596 (2019).

    Google Scholar 

  44. Y. Zou, Y. Zhang, Y. Hu, and H. Gu, Sensors 18, 2072 (2018).

    Google Scholar 

  45. E.H. Nicollian and J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982).

    Google Scholar 

  46. B.A. Gozeh, A. Karabulut, C.B. Ismael, S.I. Saleh, and F. Yakuphanoglu, J. Alloys Compd. 872, 159624 (2021).

    Google Scholar 

  47. F.Z. Acar, A. Buyukbas-Ulusan, and A. Tataroglu, J. Mater. Sci.: Mater. Electron. 29, 12553 (2018).

    Google Scholar 

  48. N. Doukhane and B. Birouk, Appl. Phys. A 124, 275 (2018).

    Google Scholar 

  49. H. Kim, Trans. Electr. Electron. Mater. 17, 293 (2016).

    Google Scholar 

  50. R. Chaleawpong, N. Promros, P. Charoenyuenyao, N. Borwornpornmetee, P. Sittisart, P. Sittimart, Y. Tanaka, and T. Yoshitake, Thin Solid Film. 709, 138229 (2020).

    Google Scholar 

  51. E. Saloma, S. Alcántara, N. Hernández-Como, J. Villanueva-Cab, M. Chavez, G. Pérez-Luna, and J. Alvarado, Mater. Res. Exp. 7, 105902 (2020).

    Google Scholar 

  52. Y. Shi, Q. Zhou, A. Zhang, L. Zhu, Y. Shi, W. Chen, Z. Li, and B. Zhang, Nanoscale Res. Lett. 12, 342 (2017).

    Google Scholar 

  53. Z.F. Zhu, H.Q. Zhang, H.W. Liang, X.C. Peng, J.J. Zou, B. Tang, and G.T. Du, Chin. Phys. Lett. 34, 097301 (2017).

    Google Scholar 

  54. E.H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967).

    Google Scholar 

  55. B.A. Gozeh, A. Karabulut, A. Yildiz, A. Dere, B. Arif, and F. Yakuphanoglu, Silicon 12, 1673 (2020).

    Google Scholar 

  56. B.A. Gozeh, A. Karabulut, M.M. Ameen, A. Yildiz, and F. Yakuphanoğlu, Surf. Rev. Lett. 27, 1950173 (2020).

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the support of the King Khalid University for this research through grant # RCAMS/KKU/p002-21 under the Research Center for Advanced Materials Science at King Khalid University, Kingdom of Saudi Arabia. Also, authors would like to acknowledge the support of FIRAT University Scientific Research Projects Unit for this research through ADEP-22.01, FF.12.19, and FF.22.17, ADEP-23.05 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkerim Karabulut.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sehemi, A.G., Tataroglu, A., Karabulut, A. et al. Optoelectronic and Photonic Characteristics of Al/p-Si Diode with Boric Acid-Doped Zinc Oxide Interlayer. JOM 75, 3587–3600 (2023). https://doi.org/10.1007/s11837-023-05979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05979-0

Navigation