Skip to main content
Log in

A Fractal Description of Finely Ground Particles of Natural Quartz Using Particle Size and Image Analyses

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The morphological characteristics of mineral particles in ultrafine range have a significant influence on engineering processes but have not been extensively explored until now. In this study, the morphology of fine quartz particles produced in a planetary ball mill is considered using fractal geometry and stereometric tools in connection with particle size analysis. Structure functions and bidimensional shape factors were derived from numerical analysis of scanning electron micrographs using surface height functions and watershed algorithms. Secondary electron images were obtained from aliquots of clear and milky quartz samples ground up to 32 h. The fragmentation fractal dimension derived from the uniformity index of particle size distributions showed a distinct non-monotonical increase with the elapsed grinding time for each sample. Overall variations in fractal parameters (fractal dimension and corner frequency) and Feret’s diameter showed that the slowdown in particle size reduction and the onset of interparticle agglomeration occurred earlier for clear (monocrystalline) than for milky (polycrystalline) quartz. The onset of round-like agglomerates was also noticed with circular and round patterns. The loss of energy efficiency due to prolonged grinding processes was characterized by the decrease observed in the morphological fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W. Peukert, H.C. Schwarzer, and F. Stenger, Chem. Eng. Process. 44, 245 (2005).

    Article  Google Scholar 

  2. L. Opoczky, Powder Technol. 17, 1 (1977).

    Article  Google Scholar 

  3. C. Knieke, M. Sommer, and W. Peukert, Powder Technol. 195, 25 (2009).

    Article  Google Scholar 

  4. P. Prziwara, S. Breitung-Faes, and A. Kwade, Adv. Powder Technol. 29, 416 (2018).

    Article  Google Scholar 

  5. V.V. Boldyrev, S.Y. Pavlov, and E.L. Goldberg, Int. J. Miner. Process. 44–45, 181 (1996).

    Article  Google Scholar 

  6. Q. Zhang, J. Kano, and F. Saito, in Handbook of Powder Technology, vol 12. ed. by A.D. Salman, M. Ghadini, and M.J. Hounslow (Elsevier, Amsterdam, 2007), pp. 509–528.

    Google Scholar 

  7. P.L. Guzzo, F.B.M. de Barros, and A.A.A. Tino, Powder Technol. 342, 141 (2019).

    Article  Google Scholar 

  8. T.P. Meloy, and M.C. Williams, Challenges in Mineral Processing (SMI, New York, 1994), pp. 207–221.

    Google Scholar 

  9. F. Podczeck, Powder Technol. 93, 47 (1997).

    Article  Google Scholar 

  10. M.M. Ahmed, Int. J. Miner. Process. 94, 180 (2010).

    Article  Google Scholar 

  11. D.L. Turcotte, J. Geophys. Res. 91, 1921 (1986).

    Article  Google Scholar 

  12. B.H. Kaye, G.G. Clark, and Y. Liu, Part. Part. Syst. Charact. 9, 1 (1992).

    Article  Google Scholar 

  13. A. Thomas, and L.O. Filippov, Int. J. Miner. Process. 57, 285 (1999).

    Article  Google Scholar 

  14. A.A. Langroudi, I. Jefferson, K. O’hara-Dhand, and I. Smalley, Geomorphology 211, 1 (2014).

    Article  Google Scholar 

  15. Y. Xu, Powder Technol. 323, 337 (2018).

    Article  Google Scholar 

  16. G.J. Brown, N.J. Miles, and T.F. Jones, Miner. Eng. 9, 715 (1996).

    Article  Google Scholar 

  17. H. Nagahama, Int. J. Rock Mech. 30, 469 (1993).

    Article  Google Scholar 

  18. L. Little, M. Becker, J. Wiese, and A.N. Mainza, Miner. Eng. 82, 92 (2015).

    Article  Google Scholar 

  19. P.L. Guzzo, in Rochas & Minerais Industriais: Usos e Aplicações, 2nd edn. ed. by A.B. Luz, and F.F. Lins (CETEM, Rio de Janeiro, 2008), pp. 681–721. (in Portuguese).

    Google Scholar 

  20. J. Götze, in Quartz: Deposits, Mineralogy and Analytics. ed. by J. Götze, and R. Möckel (Springer, Berlin Heidelberg, 2012), pp. 1–28.

    Chapter  Google Scholar 

  21. K. Yildirim, H. Cho, and L.G. Austin, Powder Technol. 105, 210 (1999).

    Article  Google Scholar 

  22. D.W. Fuerstenau, and A.-Z.M. Abouzeid, Int. J. Miner. Process. 67, 161 (2002).

    Article  Google Scholar 

  23. L.M. Tavares, in Handbook of Powder Technology. ed. by A.D. Salman, M. Ghadini, and M.J. Hounslow (Elsevier, Amsterdam, 2007), pp. 3–68.

    Google Scholar 

  24. K.J. Murata, and M.B. Normann II., Am. J. Sci. 276, 1120 (1976).

    Article  Google Scholar 

  25. P.L. Guzzo, F.B. Marinho de Barros, B.R. Soares, and J.B. Santos, Powder Technol. 368, 149 (2020).

    Article  Google Scholar 

  26. J. Yue, and B. Klein, Miner. Eng. 18, 325 (2005).

    Article  Google Scholar 

  27. A. Shrivastava, S. Sakthivel, B. Pitchumani, and A.S. Rathore, Powder Technol. 211, 46 (2011).

    Article  Google Scholar 

  28. Ş Ţălu, Micro and Nanoscale Characterization of Three Dimensional Surfaces. Basics and Applications (Napoca Star Publishing House, Cluj-Napoca, 2015).

    Google Scholar 

  29. A. Thomas, and T.R. Thomas, J. Wave Mater. Interact. 3, 341 (1988).

    Google Scholar 

  30. E. Eberhardt, B. Stimpson, and D. Stead, Rock Mech. Rock Eng. 32, 81 (1999).

    Article  Google Scholar 

  31. N.G. Yilmaz, Z. Karaca, R.M. Goktan, and C. Akal, Constr. Build. Mater. 23, 370 (2009).

    Article  Google Scholar 

  32. S. Sadrai, J.A. Meech, D. Tromans, and F. Sassani, Miner. Eng. 24, 1053 (2011).

    Article  Google Scholar 

  33. G.J. Brown, Miner. Eng. 10, 229 (1997).

    Article  Google Scholar 

  34. H. Mio, J. Kano, and F. Saito, Chem. Eng. Sci. 59, 5909 (2004).

    Article  Google Scholar 

  35. S. Liu, Q. Li, G. Xie, L. Li, and H. Xiao, Powder Technol. 295, 133 (2016).

    Article  Google Scholar 

  36. C.O.R. Abbireddy, and C.R.I. Clayton, Proc. Inst. Civil Eng. Geotech. Eng. 162, 193 (2009).

    Article  Google Scholar 

  37. Ş Ţălu, M. Bramowicz, S. Kulesza, A. Shafiekhani, A. Ghaderi, F. Mashayekhi, and S. Solaymani, Ind. Eng. Chem. Res. 54, 8212 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Grinding tests and particle size analysis were undertaken with the facilities provided by M.Sc. Filipe B. Marinho de Barros and M.Sc. Bruno R. Soares at Department of Mining Engineering, Federal University of Pernambuco (Recife, Brazil). PLG is grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) for financial support (P: 420002/2016-02; P: 306374/2018-8; P: 310635/2021-7).

Author information

Authors and Affiliations

Authors

Contributions

PLG: Conceived the experimental work, methodology, SEM imaging, drafted the manuscript. ŞŢ: Conceived the study, revised the manuscript. SK: Fractal analysis, investigation, supervision. MB: Draft preparation, data analyses, investigation, validation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ştefan Ţălu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. No author has a financial or proprietary interest in any material or method mentioned.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzzo, P.L., Ţălu, Ş., Kulesza, S. et al. A Fractal Description of Finely Ground Particles of Natural Quartz Using Particle Size and Image Analyses. JOM 75, 1333–1344 (2023). https://doi.org/10.1007/s11837-022-05687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05687-1

Navigation