Skip to main content
Log in

The Effect of Extrusion Parameters on the Microstructure and Mechanical Properties of TiCp/Mg-2.4Al-2.4Ca-0.6Mn Nanocomposites

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

TiCp/Mg-2.4Al-2.4Ca-0.6Mn (wt.%) nanocomposites have been extruded at different extrusion parameters. The grain of the composites was remarkably refined, and main second phase changed from the continuous network (Mg, Al)2Ca(C36) phase to the fractured (Mg, Al)2Ca(C36) phase with the decrease of extrusion temperature and speed. All the extruded composites displayed basal poles which are preferentially perpendicular to the extrusion direction (ED). As the extrusion speed increased, the basal plane (0002), prismatic type I side (10 \(\overline{1 }\) 0) and prismatic type II side (11 \(\overline{2 }\) 0) of TiCp/AXM2206 composites showed a weakening trend. The texture composition of extruded TiCp/AXM2206 composites was greatly affected by the degree of dynamic recrystallization (DRX) and the precipitates. The TiCp/Mg-Al-Ca-Mn nanocomposites exhibited excellent properties with tensile yield strength (TYS) of 400.3 MPa and ultimate strength (UTS) of 417.0 MPa. The improved strength was related to grain refinement, dislocation strengthening, thermal mismatch strengthening, and Orowan strengthening. During the tensile process, a large number of microcracks were formed along the (Mg, Al)2Ca(C36), resulting in structural failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. K. Nie, Z. Zhu, P. Munroe, K. Deng, and J. Han, J. Mater. Sci. 55, 3588. https://doi.org/10.1007/s10853-019-04174-4 (2019).

    Article  Google Scholar 

  2. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang, J. Mater. Sci. Technol. 34, 245. https://doi.org/10.1016/j.jmst.2017.07.019 (2018).

    Article  Google Scholar 

  3. I. Dinaharan, S.C. Vettivel, M. Balakrishnan, and E.T. Akinlabi, J. Magnes. Alloys 7, 155. https://doi.org/10.1016/j.jma.2019.01.003 (2019).

    Article  Google Scholar 

  4. X. Zhang, K.K. Deng, W.J. Li, H.X. Wang, K.B. Nie, F.J. Xu, and W. Liang, Mater. Sci. Eng. A 647, 15. https://doi.org/10.1016/j.msea.2015.08.087 (2015).

    Article  Google Scholar 

  5. S.M. Liang, R.S. Chen, J.J. Blandin, M. Suery, and E.H. Han, Mater. Sci. Eng. A 480, 365. https://doi.org/10.1016/j.msea.2007.07.025 (2008).

    Article  Google Scholar 

  6. G. Han, D. Chen, G. Chen, and J. Huang, J. Mater. Sci. Technol. 34, 2063. https://doi.org/10.1016/j.jmst.2018.03.019 (2018).

    Article  Google Scholar 

  7. K. Deng, J. Shi, C. Wang, X. Wang, Y. Wu, K. Nie, and K. Wu, Compos. A 43, 1280. https://doi.org/10.1016/j.compositesa.2012.03.007 (2012).

    Article  Google Scholar 

  8. Z.H. Zhu, K.B. Nie, K.K. Deng, and J.G. Han, Mater. Sci. Eng. C Mater. Biol. Appl. 107, 110360. https://doi.org/10.1016/j.msec.2019.110360 (2020).

    Article  Google Scholar 

  9. K. Deng, C. Wang, J. Shi, Y. Wu, and K. Wu, Mater. Chem. Phys. 134, 581. https://doi.org/10.1016/j.matchemphys.2012.04.010 (2012).

    Article  Google Scholar 

  10. Y.-S. Yi, Y. Meng, D.-Q. Li, S. Sugiyama, and J. Yanagimoto, J. Mater. Sci. Technol. 34, 1149. https://doi.org/10.1016/j.jmst.2017.11.044 (2018).

    Article  Google Scholar 

  11. A. Matin, F.F. Saniee, and H.R. Abedi, Mater. Sci. Eng. A 625, 81. https://doi.org/10.1016/j.msea.2014.11.050 (2015).

    Article  Google Scholar 

  12. K.B. Nie, X.J. Wang, L. Xu, K. Wu, X.S. Hu, and M.Y. Zheng, J. Alloys Compd. 512, 355. https://doi.org/10.1016/j.jallcom.2011.09.099 (2012).

    Article  Google Scholar 

  13. X.J. Wang, K. Wu, H.F. Zhang, W.X. Huang, H. Chang, W.M. Gan, M.Y. Zheng, and D.L. Peng, Mater. Sci. Eng. A 465, 78. https://doi.org/10.1016/j.msea.2007.03.077 (2007).

    Article  Google Scholar 

  14. K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, J. Alloys Compd. 509, 8664. https://doi.org/10.1016/j.jallcom.2011.06.091 (2011).

    Article  Google Scholar 

  15. K. Zhao, T. Gao, H. Yang, K. Hu, G. Liu, Q. Sun, J. Nie, and X. Liu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.140852 (2021).

    Article  Google Scholar 

  16. X.-F. Sun, C.-J. Wang, K.-K. Deng, K.-B. Nie, X.-C. Zhang, and X.-Y. Xiao, J. Alloys Compd. 732, 328. https://doi.org/10.1016/j.jallcom.2017.10.164 (2018).

    Article  Google Scholar 

  17. L. Liu and H. Ding, J. Alloys Compd. 484, 949. https://doi.org/10.1016/j.jallcom.2009.05.089 (2009).

    Article  Google Scholar 

  18. Y. Chai, B. Jiang, J. Song, Q. Wang, J. He, J. Zhao, G. Huang, Z. Jiang, and F. Pan, Mater. Sci. Eng. A 730, 303. https://doi.org/10.1016/j.msea.2018.06.011 (2018).

    Article  Google Scholar 

  19. W.-J. Li, K.-K. Deng, X. Zhang, K.-B. Nie, and F.-J. Xu, Mater. Sci. Eng. A 677, 367. https://doi.org/10.1016/j.msea.2016.09.059 (2016).

    Article  Google Scholar 

  20. S.W. Xu, N. Matsumoto, K. Yamamoto, S. Kamado, T. Honma, and Y. Kojima, Mater. Sci. Eng. A 509, 105. https://doi.org/10.1016/j.msea.2009.02.024 (2009).

    Article  Google Scholar 

  21. J.-W. Kang, X.-F. Sun, K.-K. Deng, F.-J. Xu, X. Zhang, and Y. Bai, Mater. Sci. Eng. A 697, 211. https://doi.org/10.1016/j.msea.2017.05.017 (2017).

    Article  Google Scholar 

  22. K.B. Nie, Z.H. Zhu, K.K. Deng, and J.G. Han, J. Magnes. Alloys 8, 676. https://doi.org/10.1016/j.jma.2020.04.006 (2020).

    Article  Google Scholar 

  23. H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z.-Q. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, and J.-F. Nie, Acta Mater. 149, 350. https://doi.org/10.1016/j.actamat.2018.03.002 (2018).

    Article  Google Scholar 

  24. Z.T. Li, X.D. Zhang, M.Y. Zheng, X.G. Qiao, K. Wu, C. Xu, and S. Kamado, Mater. Sci. Eng. A 682, 423. https://doi.org/10.1016/j.msea.2016.11.026 (2017).

    Article  Google Scholar 

  25. H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, and G. Qin, Acta Mater. 186, 278. https://doi.org/10.1016/j.actamat.2020.01.017 (2020).

    Article  Google Scholar 

  26. P. Xiao, Y. Gao, F. Xu, S. Yang, B. Li, Y. Li, Z. Huang, and Q. Zheng, J. Alloys Compd. 780, 237. https://doi.org/10.1016/j.jallcom.2018.11.253 (2019).

    Article  Google Scholar 

  27. X. Lu, G. Zhao, J. Zhou, C. Zhang, and L. Sun, Vacuum 157, 180. https://doi.org/10.1016/j.vacuum.2018.08.041 (2018).

    Article  Google Scholar 

  28. Z.T. Li, X.G. Qiao, C. Xu, S. Kamado, M.Y. Zheng, and A.A. Luo, J. Alloys Compd. 792, 130. https://doi.org/10.1016/j.jallcom.2019.03.319 (2019).

    Article  Google Scholar 

  29. P. Peng, X. He, J. She, A. Tang, M. Rashad, S. Zhou, G. Zhang, X. Mi, and F. Pan, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2019.138332 (2019).

    Article  Google Scholar 

  30. K.B. Nie, Z.H. Zhu, K.K. Deng, and J.G. Han, J. Mater. Res. Technol. 9, 5264. https://doi.org/10.1016/j.jmrt.2020.03.053 (2020).

    Article  Google Scholar 

  31. A. Sanaty-Zadeh, Mater. Sci. Eng. A 531, 112. https://doi.org/10.1016/j.msea.2011.10.043 (2012).

    Article  Google Scholar 

  32. M.T. Andani, A. Lakshmanan, V. Sundararaghavan, J. Allison, and A. Misra, Acta Mater. https://doi.org/10.1016/j.actamat.2021.117613 (2022).

    Article  Google Scholar 

  33. X.K. Kang, K.B. Nie, K.K. Deng, and Y.C. Guo, Mater. Charact. 151, 137. https://doi.org/10.1016/j.matchar.2019.03.004 (2019).

    Article  Google Scholar 

  34. Z. Jiang, B. Jiang, H. Yang, Q. Yang, J. Dai, and F. Pan, J. Alloys Compd. 647, 357. https://doi.org/10.1016/j.jallcom.2015.06.060 (2015).

    Article  Google Scholar 

  35. Y.C. Guo, K.B. Nie, X.K. Kang, K.K. Deng, J.G. Han, and Z.H. Zhu, J. Alloys Compd. 771, 847. https://doi.org/10.1016/j.jallcom.2018.09.030 (2019).

    Article  Google Scholar 

  36. A. Yang, K. Nie, K. Deng, and Y. Li, J. Market. Res. 9, 11717. https://doi.org/10.1016/j.jmrt.2020.08.035 (2020).

    Article  Google Scholar 

  37. H. Zhang and S. Wang, J. Mater. Res. 27, 1631. https://doi.org/10.1557/jmr.2012.77 (2012).

    Article  Google Scholar 

  38. Q.-H. Yuan, Z.-Q. Qiu, G.-H. Zhou, X.-S. Zeng, L. Luo, X.-X. Rao, Y. Ding, and Y. Liu, Mater. Charact 138, 215. https://doi.org/10.1016/j.matchar.2018.02.011 (2018).

    Article  Google Scholar 

  39. X. Huang, Y. Gao, Z. Wang, Y. Yi, and Y. Wang, J. Alloys Compd 792, 907. https://doi.org/10.1016/j.jallcom.2019.04.056 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers 51771129, 51401144 and 51771128]; National Key Research and Development Program for Young Scientists [Grant. 2021YFB3703300]; the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi; the Natural Science Foundation of Shanxi Province [Grant Numbers 2015021067 and 201601D011034]; and the Projects of International Cooperation in Shanxi [Grant No. 201703D421039]. Supported by Open Foundation of State Key Laboratory of Compressor Technology (Compressor Technology Laboratory of Anhui Province), No. SKL-YSJ202103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaibo Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Nie, K., Liu, Z. et al. The Effect of Extrusion Parameters on the Microstructure and Mechanical Properties of TiCp/Mg-2.4Al-2.4Ca-0.6Mn Nanocomposites. JOM 74, 4226–4238 (2022). https://doi.org/10.1007/s11837-022-05475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05475-x

Navigation