Skip to main content

Advertisement

Log in

On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels: Roles of Heavy Element Segregation and Stacking Fault Energy

  • Additive Manufacturing for Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The thermal stability of dislocation cellular structures in three additively manufactured (AM) austenitic stainless steels (SSs), 316L SS, 304L SS, and Al modified 316L SS (316L(Al)), were studied. Minor alloying elements, Mo and Al, were found affecting the stability of the cellular structures in AM austenitic SS, resulting in a stability ranking of AM 316L SS > AM 304L SS > AM 316L(Al) SS. As a result, their abilities towards recrystallization also differed. Owing to the high stacking fault energy (SFE) due to Al addition, AM 316L(Al) SS had the least stable subgrain cellular structure and exhibited the lowest recovery temperature. Although 316L SS possessed slightly higher SFE than 304L SS, the pinning effect due to Mo segregation at the cellular walls in AM 316L SS significantly enhanced its thermal stability. While the low-SFE AM 316L SS and AM 304L SS recovered their cellular structures via the equiaxed cell growth, the dislocation cellular walls in high-SFE AM 316L(Al) SS continuously vanished along a preferred direction. The fast recovery of cellular structures led to recrystallization retardation. The Hall–Petch model was found incapable of correlating cell size to strength because of the continuous weakening of cellular walls during heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 92, 112 (2018).

    Google Scholar 

  2. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Nat. Mater. 17, 63 (2018).

    Google Scholar 

  3. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, J. Nulc. Mater. 470, 170 (2016).

    Google Scholar 

  4. R. Casati, J. Lemke, and M. Vedani, J. Mater. Sci. Technol. 32, 738 (2016).

    Google Scholar 

  5. P. Deng, M. Karadge, R.B. Rebak, V.K. Gupta, B.C. Prorok, and X. Lou, Addit. Manuf. 35, 101334 (2020).

    Google Scholar 

  6. M. Ghayoor, K. Lee, Y. He, C.-H. Chang, B.K. Paul, and S. Pasebani, Addit. Manuf. 32, 1 (2020).

    Google Scholar 

  7. M.A. Melia, H.-D.A. Nguyen, J.M. Rodelas, and E.J. Schindelholz, Corros. Sci. 152, 20 (2019).

    Google Scholar 

  8. W. Huang, Y. Zhang, W. Dai, and R. Long, Mater. Sci. Eng., A 758, 60 (2019).

    Google Scholar 

  9. L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, and Z. Shen, Mater. Today 21, 354 (2018).

    Google Scholar 

  10. P. Krakhmalev, G. Fredriksson, K. Svensson, I. Yadroitsev, I. Yadroitsava, M. Thuvander, and R. Peng, Metals 8, 643 (2018).

    Google Scholar 

  11. E. Tascioglu, Y. Karabulut, and Y. Kaynak, Int. J. Adv. Manuf. Technol. 107, 1947 (2020).

    Google Scholar 

  12. N. Chen, G. Ma, W. Zhu, A. Godfrey, Z. Shen, G. Wu, and X. Huang, Mater. Sci. Eng., A 759, 65 (2019).

    Google Scholar 

  13. M.L. Montero Sistiaga, S, Nardone, C. Hautfenne, and J. Van Humbeeck, in Proc. Annu. Int. 27th 558 (2016).

  14. D.A.H.R.D. Doherty, F.J. Humphreys, J.J. Jonas, D. JuulJensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997).

    Google Scholar 

  15. I.Z. Awan and A.Q. Khan, J. Chem. Soc. Pak. 41, 1 (2019).

    Google Scholar 

  16. P.A.F. Stüwe and H.P.F. Siciliano Jr, Mater. Sci. Eng. A 333, 361 (2002).

    Google Scholar 

  17. N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Mater. Sci. Eng., A 527, 4161 (2010).

    Google Scholar 

  18. W. Woo, J.S. Jeong, D.K. Kim, C.M. Lee, S.H. Choi, J.Y. Suh, S.Y. Lee, S. Harjo, and T. Kawasaki, Sci. Rep. 10, 1350 (2020).

    Google Scholar 

  19. X. Feaugas and C. Gaudin, Int. J. Plast 20, 643 (2004).

    Google Scholar 

  20. J.I.P. Bampton and M.H. Loretto, Acta Metall. 26, 39 (1978).

    Google Scholar 

  21. D. Molnár, X. Sun, S. Lu, W. Li, G. Engberg, and L. Vitos, Mater. Sci. Eng. A 759, 490 (2019).

    Google Scholar 

  22. P.R. Swann, Corrosion 19, 102t (1963).

    Google Scholar 

  23. R.R.P. Schramm, Metall. Mater. Trans. A 6, 1345 (1975).

    Google Scholar 

  24. R.A.W. Latanision, Metall. Mater. Trans. B 2, 505 (1971).

    Google Scholar 

  25. M.J. Whelan, P.B. Hirsch, R.W. Horne, and W. Bollmann, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci 240, 524 (1957).

    Google Scholar 

  26. S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, and H. Hänninen, Acta Mater. 59, 1068 (2011).

    Google Scholar 

  27. T.G. Douglass and W.R. Roser, Corrosion 20, 15 (1964).

    Google Scholar 

  28. L.E. Murr, Thin Solid Films 4, 389 (1969).

    Google Scholar 

  29. G.R. Lehnhoff, K.O. Findley, and B.C. De Cooman, Scr. Mater. 92, 19 (2014).

    Google Scholar 

  30. J. Kim, S.-J. Lee, and B.C. De Cooman, Scr. Mater. 65, 363 (2011).

    Google Scholar 

  31. K.-T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Mater. Sci. Eng., A 527, 3651 (2010).

    Google Scholar 

  32. E.S. Essoussi and E. Essadiqi, Procedia Manuf. 22, 129 (2018).

    Google Scholar 

  33. S.M. Bruemmer, Corrosion 46, 699 (1990).

    Google Scholar 

  34. B.W. Bennett and H.W. Pickering, Metall. Mater. Trans. A 18, 1117 (1991).

    Google Scholar 

  35. R. Pascali, A. Benvenuti, and D. Wenger, Corrosion 40, 21 (1984).

    Google Scholar 

  36. R. Singh, I. Chattoraj, A. Kumar, B. Ravikumar, and P.K. Dey, Metall. Mater. Trans. A 34, 2441 (2003).

    Google Scholar 

  37. S.K. Mannan, R.K. Dayal, M. Vijayalakshmi, and N. Parvathavarthini, J. Nucl. Mater. 126, 1 (1984).

    Google Scholar 

  38. P.L. Andresen, Understanding and Mitigating Ageing in Nuclear Power Plants (Philadelphia: Woodhead Publishing, 2010), pp. 236–307.

    Google Scholar 

  39. N. Kamikawa, T. Hirochi, and T. Furuhara, Metall. Mater. Trans. A 50, 234 (2018).

    Google Scholar 

  40. T. Pinomaa, M. Lindroos, M. Walbrühl, N. Provatas, and A. Laukkanen, Acta Mater. 184, 1 (2020).

    Google Scholar 

  41. E. Getto, B. Tobie, E. Bautista, A.L. Bullens, Z.T. Kroll, M.J. Pavel, K.S. Mao, D.W. Gandy, and J.P. Wharry, JOM 71, 2837 (2019).

    Google Scholar 

  42. J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, Metall. Trans. 2, 1979 (1971).

    Google Scholar 

  43. O. Takakuwa, Y. Kawaragi, and H. Soyama, J. Surf. Engd. Mater. Adv. Technol. 03, 262 (2013).

    Google Scholar 

  44. J.T. Busby, M.C. Hash, and G.S. Was, J. Nucl. Mater. 336, 267 (2005).

    Google Scholar 

  45. C.G. Rhodes and A.W. Thompson, Metall. Trans. A 8, 1901 (1977).

    Google Scholar 

  46. T. Yonezawa, K. Suzuki, S. Ooki, and A. Hashimoto, Metall. Mater. Trans. A 44, 5884 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was primarily sponsored by the National Institute of Standards and Technology under Contract NIST-70NANB18H220. TEM characterization was supported by the Idaho National Laboratory’s Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517 and US Department of Energy Nuclear Energy Enabling Technologies (NEET) Program under the Contract DE-NE0008428. DL and YZ gratefully acknowledge the financial support by the startup funding from the University of Nevada Reno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Lou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Yin, H., Song, M. et al. On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels: Roles of Heavy Element Segregation and Stacking Fault Energy. JOM 72, 4232–4243 (2020). https://doi.org/10.1007/s11837-020-04427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04427-7

Navigation