Skip to main content
Log in

Microstructural Modification and Tensile Behavior of IF Steel Processed through Surface Mechanical Attrition Treatment

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present investigation deals with the impact of surface mechanical attrition treatment (SMAT) on the surface roughness, microstructure, phase stability, hardness, and tensile properties of interstitial-free (IF) steel. SMATed IF steel was characterized by visible-light microscopy, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy, and microindentation and tensile testing. The grain refinement and strengthening of the IF steel were found to be dependent on the duration of SMAT. The optimal combination of strength and elongation was observed in the IF steel SMATed for 200 s, showing a microhardness gradient up to a depth of ~ 900 µm and peak surface hardness of 2.6 GPa. The 0.2% yield strength of the IF steel was increased by ~ 125% with an appreciable elongation (~ 44%) almost comparable to that of the untreated material. Furthermore, IF steel SMATed for 200 s followed by stress relief at 300°C and 500°C was found to exhibit thermally stable gradient microstructures with good strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Hoile, Mater. Sci. Technol. 16, 1079 (2000).

    Google Scholar 

  2. R. Rana, W. Bleck, S.B. Singh, and O.N. Mohanty, Mater. Lett. 61, 2919 (2007).

    Google Scholar 

  3. R. Rana, S.B. Singh, and O.N. Mohanty, Mater. Charact. 59, 969 (2008).

    Google Scholar 

  4. R. Rana, S.B. Singh, W. Bleck, and O.N. Mohanty, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 856 (2009).

    Google Scholar 

  5. Y.Z. Shen, K.H. Oh, and D.N. Lee, Mater. Sci. Eng., A 434, 314 (2006).

    Google Scholar 

  6. P. Ghosh, R.K. Ray, B. Bhattacharya, and S. Bhargava, Scr. Mater. 55, 271 (2006).

    Google Scholar 

  7. P. Ghosh, C. Ghosh, R.K. Ray, and D. Bhattacharjee, Scr. Mater. 59, 276 (2008).

    Google Scholar 

  8. R. Saha and R.K. Ray, Scr. Mater. 57, 841 (2007).

    Google Scholar 

  9. O. Saray, A. Purcek, I. Karaman, and H.J. Maier, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 4320 (2012).

    Google Scholar 

  10. O. Saray, G. Purcek, I. Karaman, and H.J. Maier, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 4194 (2013).

    Google Scholar 

  11. G. Purcek, O. Saray, I. Karaman, and H.J. Maier, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 1884 (2012).

    Google Scholar 

  12. R. Saha and R.K. Ray, Mater. Sci. Eng., A 459, 223 (2007).

    Google Scholar 

  13. A. Bhowmik, S. Biswas, S. Suwas, R.K. Ray, and D. Bhattacharjee, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 2729 (2009).

    Google Scholar 

  14. A. Sarkar, A. Bhowmik, and S. Suwas, Appl. Phys. A Mater. Sci. Process. 94, 943 (2009).

    Google Scholar 

  15. R. Jamaati, M. Reza Toroghinejad, and H. Edris, Mater. Sci. Eng., A 583, 20 (2013).

    Google Scholar 

  16. R. Jamaati, M.R. Toroghinejad, S. Amirkhanlou, and H. Edris, Mater. Sci. Eng., A 639, 656 (2015).

    Google Scholar 

  17. R. Jamaati, M.R. Toroghinejad, S. Amirkhanlou, and H. Edris, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 4013 (2015).

    Google Scholar 

  18. S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, and C.H.J. Davies, Acta Mater. 54, 1087 (2006).

    Google Scholar 

  19. A.A. Gazder, W. Cao, C.H.J. Davies, and E.V. Pereloma, Mater. Sci. Eng., A 497, 341 (2008).

    Google Scholar 

  20. A.A. Gazder, S.S. Hazra, and E.V. Pereloma, Mater. Sci. Eng., A 530, 492 (2011).

    Google Scholar 

  21. N. Tsuji, R. Ueji, and Y. Minamino, Scr. Mater. 47, 69 (2002).

    Google Scholar 

  22. X. Huang, N. Kamikawa, and N. Hansen, J. Mater. Sci. 45, 4761 (2010).

    Google Scholar 

  23. X.C. Liu, H.W. Zhang, and K. Lu, Acta Mater. 96, 24 (2015).

    Google Scholar 

  24. P. Hru and J. Cí, M. Jane 105, 258 (2016).

    Google Scholar 

  25. Y. Shadangi, K. Chattopadhyay, S.B. Rai, and V. Singh, Surf. Coat. Technol. 280, 216 (2015).

    Google Scholar 

  26. X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. 111, 7197 (2014).

    Google Scholar 

  27. D. Verma, S.K. Shekhawat, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, J. Mater. Eng. Perform. 25, 820 (2016).

    Google Scholar 

  28. D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, Trans. Indian Inst. Met. 70, 917 (2017).

    Google Scholar 

  29. D. Verma, S.A. Pandey, A. Bansal, S. Upadhyay, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, J. Mater. Eng. Perform. 25, 5157 (2016).

    Google Scholar 

  30. D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 1803 (2016).

    Google Scholar 

  31. G. Liu, J. Lu, and K. Lu, Mater. Sci. Eng., A 286, 91 (2000).

    Google Scholar 

  32. K. Lu and J. Lu, Mater. Sci. Eng., A 375–377, 38 (2004).

    Google Scholar 

  33. E. Ma and T. Zhu, Mater. Today 20, 323 (2017).

    Google Scholar 

  34. X.C. Liu and H.W. Zhang, K. Lu 95, 54 (2015).

    Google Scholar 

  35. B. Arifvianto, M. Mahardika, P. Dewo, P.T. Iswanto, and U.A. Salim, Mater. Chem. Phys. 125, 418 (2011).

    Google Scholar 

  36. V. Pandey, J.K. Singh, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh, J. Alloys Compd. 723, 826 (2017).

    Google Scholar 

  37. V. Pandey, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh, Int. J. Fatigue 103, 426 (2017).

    Google Scholar 

  38. S. Kumar, K. Chattopadhyay, G.S. Mahobia, and V. Singh, Mater. Des. 110, 196 (2016).

    Google Scholar 

  39. Y. Sun, Tribol. Int. 57, 67 (2013).

    Google Scholar 

  40. Y. Shadangi, V. Shivam, M.K. Singh, K. Chattopadhyay, J. Basu, and N.K. Mukhopadhyay, J. Alloys Compd. 797, 1280 (2019).

    Google Scholar 

  41. V. Pandey, G.S. Rao, K. Chattopadhyay, N.C. Santhi Srinivas, and V. Singh, Mater. Sci. Eng., A 647, 201 (2015).

    Google Scholar 

  42. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Google Scholar 

  43. G. Dini, R. Ueji, A. Najafizadeh, and S.M. Monir-Vaghefi, Mater. Sci. Eng., A 527, 2759 (2010).

    Google Scholar 

  44. Z. Yin, X. Yang, X. Ma, J. Moering, J. Yang, Y. Gong, Y. Zhu, and X. Zhu, Mater. Des. 105, 89 (2016).

    Google Scholar 

  45. X.C. Liu, H.W. Zhang, and K. Lu, Scr. Mater. 95, 54 (2015).

    Google Scholar 

  46. N.R. Tao, Acta Mater. 50, 4603 (2002).

    Google Scholar 

  47. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdrop, Acta Metall. Mater. 40, 205 (1992).

    Google Scholar 

  48. Q. Zhang, H. Xu, X.H. Tan, X.L. Hou, S.W. Wu, G.S. Tan, and L.Y. Yu, J. Alloys Compd. 693, 1061 (2017).

    Google Scholar 

  49. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara, Acta Mater. 83, 383 (2015).

    Google Scholar 

  50. X.H. Chen, J. Lu, L. Lu, and K. Lu, Scr. Mater. 52, 1039 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. N K Mukhopadhyay, Drs. Joysurya Basu and Vishwanath Balakrishnan, and Mr. Piyush Awasthi for necessary suggestions regarding TEM sample preparation and studies. The authors are grateful to Prof. R K Mandal and the Central Instrument Facility, IIT (BHU), Varanasi for extending the necessary characterization facilities. The authors gratefully acknowledge the Department of Science and Technology (DST) for financial support DST-SERB funded Project CRG/2019/000430. Y.S. thanks Mr. Shivam Gupta and Mr. Himanshu Barnwal for some experimental help. The authors gratefully acknowledge technical help from Mr. Lalit Kumar Singh and Mr. Girish Sahoo for TEM and SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yagnesh Shadangi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadangi, Y., Chattopadhyay, K. & Singh, V. Microstructural Modification and Tensile Behavior of IF Steel Processed through Surface Mechanical Attrition Treatment. JOM 72, 4330–4339 (2020). https://doi.org/10.1007/s11837-020-04400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04400-4

Navigation