Skip to main content
Log in

Phase Deconvolution of Multiphasic Materials by the Universal Scaling of the Magnetocaloric Effect

  • Advanced Processing and Additive Manufacturing of Functional Magnetic Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Multiphase magnetocaloric materials result from design, where different phases are combined in a composite, or residual phases in the production of the material. The universal scaling of the magnetocaloric effect, commonly used for the study of single-phase second-order phase transitions, shows distortions when applied to multiphase materials with phases that undergo second-order phase transitions. In this work, universal scaling has been applied to a composite with coexistent Gd and Gd7Pd3 phases with comparable magnetocaloric responses and Curie temperatures separated by ~ 45 K. The biphasic nature of the sample leads to distortions in universal scaling that have been exploited to deconvolute the magnetocaloric response of each phase. The phase ratio has been obtained through the deconvoluted magnetocaloric responses, and the results are comparable to those from x-ray diffraction refinement. This procedure allows the prediction of the response of a desired pure phase even in the presence of residual magnetic contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Zimm, A. Jastrab, A. Sternberg, V. Pecharsky, K. Gschneidner, M. Osborne, and I. Anderson, in Advances in Cryogenic Engineering (Springer US, Boston, MA, 1998), pp. 1759–1766.

  2. V.K. Pecharsky and K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).

    Article  Google Scholar 

  3. A. Planes, L. Mañosa, and M. Acet, J. Phys. Condens. Matter 21, 233201 (2009).

    Article  Google Scholar 

  4. N.H. Dung, L. Zhang, Z.Q. Ou, and E. Brück, Scr. Mater. 67, 975 (2012).

    Article  Google Scholar 

  5. S. Fujieda, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 81, 1276 (2002).

    Article  Google Scholar 

  6. A. Smaıli and R. Chahine, J. Appl. Phys. 81, 824 (1997).

    Article  Google Scholar 

  7. A.M. Gomes, J.R. Proveti, A.Y. Takeuchi, E.C. Passamani, C. Larica, and A.P. Guimarães, J. Appl. Phys. 99, 97 (2006).

    Article  Google Scholar 

  8. R. Caballero-Flores, V. Franco, A. Conde, K.E. Knipling, and M.A. Willard, Appl. Phys. Lett. 98, 102505 (2011).

    Article  Google Scholar 

  9. Q.Y. Dong, Y. Ma, Y.J. Ke, X.Q. Zhang, L.C. Wang, B.G. Shen, J.R. Sun, and Z.H. Cheng, Mater. Lett. 161, 669 (2015).

    Article  Google Scholar 

  10. A. Chaturvedi, S. Stefanoski, M.H. Phan, G.S. Nolas, and H. Srikanth, Appl. Phys. Lett. 99, 21 (2011).

    Article  Google Scholar 

  11. E. Agurgo Balfour, Appl. Phys. Lett. 104, 072401 (2014).

    Article  Google Scholar 

  12. J.Y. Law, L.M. Moreno-Ramírez, J.S. Blázquez, V. Franco, and A. Conde, J. Alloys Compd. 675, 244 (2016).

    Article  Google Scholar 

  13. P. Gębara, Á. Díaz-García, J.Y. Law, and V. Franco, J. Magn. Magn. Mater. 500, 166175 (2020).

    Article  Google Scholar 

  14. V. Franco and A. Conde, Int. J. Refrig. 33, 465 (2010).

    Article  Google Scholar 

  15. V. Franco, R. Caballero-Flores, A. Conde, Q.Y. Dong, and H.W. Zhang, J. Magn. Magn. Mater. 321, 1115 (2009).

    Article  Google Scholar 

  16. V.K. Pecharsky and K.A. Gschneidner, J. Magn. Magn. Mater. 200, 44 (1999).

    Article  Google Scholar 

  17. V. Franco, J.S. Blázquez, and A. Conde, Appl. Phys. Lett. 89, 4 (2006).

    Article  Google Scholar 

  18. C. Romero-Muñiz, J.J. Ipus, J.S. Blázquez, V. Franco, and A. Conde, Appl. Phys. Lett. 104, 252405 (2014).

    Article  Google Scholar 

  19. T.L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.T. Le, A.D. Phan, and S.C. Yu, J. Alloys Compd. 657, 818 (2016).

    Article  Google Scholar 

  20. H. Omrani, M. Mansouri, W. Cheikhrouhou Koubaa, M. Koubaa, and A. Cheikhrouhou, RSC Adv. 6, 78017 (2016).

    Article  Google Scholar 

  21. V. Franco, A. Conde, M.D. Kuz’Min, and J.M. Romero-Enrique, J. Appl. Phys. 105, 103 (2009).

    Article  Google Scholar 

  22. C. Romero-Muñiz, V. Franco, and A. Conde, Phys. Chem. Chem. Phys. 19, 3582 (2017).

    Article  Google Scholar 

  23. C. Romero-Muñiz, V. Franco, and A. Conde, Appl. Phys. Lett. 102, 9 (2013).

    Article  Google Scholar 

  24. S. Kaul and S. Srinath, Phys. Rev. B Condens. Matter Mater. Phys. 62, 1114 (2000).

    Article  Google Scholar 

  25. H. Neves Bez, H. Yibole, A. Pathak, Y. Mudryk, and V.K. Pecharsky, J. Magn. Magn. Mater. 458, 301 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by AEI/FEDER-UE (grants MAT-2016-77265-R and PID2019-105720RB-I00), Consejería de Economía y Conocimiento of the Regional Government of Andalucía (grants US-1260179 and P18-RT-746), the Army Research Laboratory under Cooperative Agreement Number W911NF-19-2-0212 and Research Project No. 2019/03/X/ST5/00066 in 2019–2020 financed by the Polish National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victorino Franco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-García, Á., Law, J.Y., Gębara, P. et al. Phase Deconvolution of Multiphasic Materials by the Universal Scaling of the Magnetocaloric Effect. JOM 72, 2845–2852 (2020). https://doi.org/10.1007/s11837-020-04251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04251-z

Navigation